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ABSTRACT

In this paper, we investigate the use of ensemble machine learn-
ing techniques in tandem with evolutionary strategies for hyper-
parameter tuning for the application of predicting Warfarin doses
based on patient data.

CCS CONCEPTS

« Applied computing — Consumer health; Health care infor-
mation systems; Genetics; « Computing methodologies — Su-
pervised learning; Machine learning approaches;

1 INTRODUCTION

Modern healthcare practices often rely on the use of substances that,
in inappropriate amounts, can cause serious damage to the human
body. Warfarin, a drug prescribed to patients with illnesses related
to excessive blood coagulation, is no exception. In fact, Warfarin
is considered to have an abnormally narrow therapeutic range:
healthcare professionals are required to determine the accurate
dose for a given patient with very little room for error. This problem
is compounded by the fact that a given patient’s ideal Warfarin dose
is dependent on a multitude of factors; as well as highly sensitive
to changes in diet and other medication[7, 14].

In the search for a reliable means of determining the correct
dose given available medical data, a range of approaches have been
tried over the decades. With the rising popularity of machine learn-
ing, several such techniques have been employed with promising
results. Pathcare, a laboratory testing services pathology practice,
initiated this project as a proof of concept for further research in
this direction. Given the individual success of Multi-Layer Percep-
tron models, Bagging ensembles and Evolutionary Algorithms in
the past[6, 9, 12, 13, 15], we aim here to apply these three methods
in tandem.

The two broad aims of this paper are as follows:

o Determine whether ensemble models perform better on local
versus international data.

e Determine to what extent additional features in the data
affect the performance of ensemble models.

2 BACKGROUND
2.1 Warfarin

Warfarin serves as a highly effective anticoagulant; primarily used
to treat thrombosis. Such is its effectiveness and widespread use,
the World Health Organisation included it in its List of of Essential
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Medicines. Warfarin decreases the availability of vitamin K; which
directly reduces the efficacy of the major clotting factors in the body.
An effective dose of Warfarin is thus dependent on all variables that
affect the presence of vitamin Kj, including diet, enzyme-inducing
comedications, as well as relevant genotypes. The genotypes for
CYP2C9 and VKORC1 (along with their polymorphisms) encode
for enzymes that are responsible for Vitamin K availability and are
thus of particular interest.

Currently, standard practice involves administering an initial
dose and changing it over the course of several frequent check-
ups until the patient’s condition is stable. The main indicator used
by clinicians to determine blood clotting tendency is the interna-
tionalised normalised ratio (INR) value[8]. In general terms, this
measurement involves timing how long a sample of blood takes to
clot. In most cases, the target INR range is between 2 and 3[2], with
less indicating a higher dose being administered and vice versa.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) seek to emulate the biological
process of learning. A set of input nodes (or “neurons”) feeds into
one or more layers of internal, “hidden”, nodes, each with an asso-
ciated weight. At each node, the input signal combined with the
weight and, depending on the implementation, may be cut off if it
does not reach a chosen threshold. The output of the network is
given by the value(s) of the node(s) in the final layer. In the train-
ing phase, the output will be compared with the expected output
and the magnitude of the difference will then be used to alter the
weights of the hidden nodes through a process known as back-
propagation. This is repeated until the network meets the desired
specifications. Numerous parameters affect the performance of an
ANN: in particular its architecture (number and size of the hidden
layers) as well as its learning rate (how aggressively the weights
are altered at the end of each training iteration)[5].

2.3 Ensemble Methods

Ensemble methods in the context of machine learning involve the
aggregation of multiple “base” machine learning models to achieve
better results than their individual use. This definition is purpose-
fully broad in that this can occur in a multitude of configurations.
The most notable possibilities for variation are as follows[1]:

o The type of base model can either remain uniform or hetero-
geneous.

o Each of the base models can be trained with the entirety of
the dataset or a sample thereof.

e Each of the base models can be trained using all or some of
the features included in the dataset.
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o The sampling of data points or features can be done with or
without replacement.

e The final output of the ensemble can either entail a simple
averaging of the base models’ predictions, a weighted aver-
age or the result of passing the input through a sequence of
estimators.

Here we will focus on homogeneous ensembles that make use of
simple averaging. In the case that this is done alongside sampling
the dataset with replacement, this is known as bootstrap aggregat-
ing (Bagging). When features are sampled with replacement, this is
referred to as the Random Subspaces method. Finally, a combination
of these two is known as the Random Patches method.

2.4 Evolutionary Algorithms

Evolutionary Algorithms are a family of optimisation methods
which mimic the process of natural selection. Individuals take the
form of potential solutions to a given problem and a population con-
sists of a collection of these. The population undergoes successive
generations via mating, mutation and selection[10].

e Mating/Crossover: this operator involves blending the char-
acteristics of two or more individuals to form a new one.

e Mutation: a unary operator that makes a minor change to
the individual’s position in the solution space.

o Selection: The driving force of evolution, this algorithm se-
lects candidates for the next generation based on their fitness.
A common selection strategy is that of the k-tournament: k
individuals are randomly selected from the population and
the fittest between them is selected.

The composition of successive generations can also be chosen. The
(1, A) method entails generating A children from the parents and
then selecting y of them to form the next generation; whereas the
(4 + A) method also generates A children but the selection process
involves the parents as well.

A subset of the EA family is known as Evolutionary Strategies.
ES are primarily used for numerical optimisation and differ from
typical Evolutionary Algorithms in that each individual is made
up not only of a candidate solution vector; but also a “strategy”
vector which affects the magnitude by which the solution vector
mutates[3].

3 DATA PREPARATION

The first dataset, supplied to us by PathCare, consisted of approx-
imately 8900 records of South African patient visits. Each record
consisted of the patient’s sex, date of birth, previous dose, current
INR, target INR, prescribed INR as well as their particular conditions
and other medications.

The second dataset available to us was that of the International
Warfarin Pharmacogenetics Consortium (IWPC) which contained
the combined collected data of several international pharmacoge-
nomics research centers and made freely available online. This
dataset consisted of 4798 records containing a patient’s sex, race,
age (given as a 10 year range), height, weight, comorbidities, medica-
tions, smoking habits, stable INR, CYP2C9 and VKORC1 genotypes,
and finally their stable dosage.

Considering that the performance of statistical models on each
dataset was going to be compared, several adjustments needed to be
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made for a fair experiment. Firstly, the IWPC dataset only contained
records for patients who had already reached their therapeutic
INR range. Thus the PathCare dataset was filtered, leaving approx.
4600 records wherein the INR was therapeutic. This result was
serendipitous as now both datasets were of roughly equal size,
removing another variable.

Secondly, the IWPC dataset was altered such that the age re-
flected the middle value of the decade range originally given and
the PathCare dataset altered to transform date of birth to current
(2018) age in years. The latter change is indeed flawed as the age
given should be the age at the time of dosage, however this was
chosen option considering that no data was available for when the
check-up was made.

Thirdly, since the PathCare columns relating to comedicaions
and comorbities were highly irregular (consisting of multiple values
in each entry, spelling mistakes and high variability), it was decided
that for this purpose the only usable input features were age, sex
and INR value. We will dub this feature set 1.

The experimental design was thus amended such that a variety
of models be tested on both datasets, each limited to these features.
The models would then be applied to the IWPC dataset with the
feature set expanded to include race, height, weight, and whether
or not the patient was a current smoker (feature set 2). The sig-
nificance of this dataset is that it consists of measurements that
can easily be made in a clinical context. The models would also be
evaluated on the IPWC dataset in almost its entirety (feature set
3). This would include feature set 2 as well as: use of Amiodarone
(an enzyme inducer), CYP2C9 genotype, VKORC1 (along with its
polymorphisms) genotypes where fewer than 20 percent of the en-
tries were empty. The other features were dismissed for containing
a majority of empty or non-applicable values.

The primary base model to be used was the Artificial Neural
Network. In the case of ANNS, input values which vary greatly in
range can lead to undesirable behaviour - such as particular features
with large values desensitising neurons to features with typically
smaller values. To prevent this, all columns in each dataset were
regularised by subtracting each value from the column’s mean and
dividing the result by the standard deviation. All data manipulation
was implemented using the Python Pandas and Numpy libraries.

The IWPC and PathCare datasets were then each split into train-
ing and testing sets with an 80:20 ratio. The models would be exper-
imented with and optimised using the training set and then a final
evaluation made by comparing predictions with the test set. The
two evaluation metrics used were Mean Absolute Error (MAE) and
PW20: the percentage of predictions made within 20% of the actual
values. The latter is of particular significance considering that a
patient’s INR value only need reach a given range and therefore a
range of dosages would suffice for this purpose.

4 EXPERIMENT IMPLEMENTATION

Due to its multiplicity of relevant packages and use in the litera-
ture, Python 3.5 was chosen as the language of implementation.
The BaggingRegressor, RandomForestRegressor, GradientBoostin-
gRegressor, MLPRegressor and LinearRegression classes were used
from the sklearn[11] package. Evolutionary Algorithm related code
was written with use of the DEAP[4] package.
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The three ensembles to be optimised using EAs were Bagging,
Random Subspaces and Random Patches, all of which using a Mul-
tilayer Perceptron as the base model. In each case, individuals con-
sisted of vectors containing the number of neurons in the MLP’s
hidden layer, the number of estimators in the ensemble, the per-
centage of features to use when training each base model (where
applicable) and the percentage of data points to use when training
each base model (where applicable). Three EA techniques were
attempted: a traditional (y, 1) Evolutionary Strategy, Covariance
Matrix Adaptation Evolution Strategy and a (u + 1) Evolutionary
Algorithm.
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Figure 1: Minimum MAE for each generation using (¢, 1) ES

In each case individuals were evaluated by training an ensemble
with the corresponding parameters and running a 10-fold cross-
validation on the training data. The (y, A) Evolutionary Strategy
proved most successful as it most easily kept parameters within a
natural range. For this implementation, the values of 1 and 1 were
5 and 20 respectively; and the number of generations, 50. These
numbers had to be kept relatively low due to extended evaluation
times for individuals. Crossover occurred with a probability of 0.6
and and the cxESBlend routine from the DEAP library was used.
Mutation occurred with a probability and DEAP’s mutESLogNor-
mal was used. Other variations which did not yield better results
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one wherein PW20 was maximised while MAE simultaneously min-
imised as well as allowing ensembles to be made up of MLPs with
differing numbers of neurons.

5 RESULTS AND CONCLUSION

Unexpectedly, the MLP ensembles’ performance on the testing set
was inversely proportional to their validation scores on the training
set (their validation scores had increased with the number of fea-
tures available). We see here that many of the ensembles performed
successively worse on feature sets 1, 2 and 3. An explanation for this
may be that the models were overfitted, or that the data between
the training and testing splits was insufficiently balanced.

The fact that Linear Regression outperformed various complex
Machine Learning techniques in many cases indicates that the prob-
lem may not require as sophisticated methods to yield satisfactory
results.

We also see that despite considerable efforts being made to op-
timise the MLP ensembles, they do not significantly outperform
other (unoptimised) techniques such as Gradient Boosting. It may
be the case that Evolutionary Algorithms are not best suited to this
problem domain.

Between the PathCare and IWPC datasets using feature set 1,
however, we see a definite increase in performance on the PathCare
dataset across the board. This may be the case due to the fact
that the population from which this dataset was collected is more
genetically correlated; whereas the IWPC dataset contained data
from individuals of different nationalities.

Model PathCare F1 IWPC F1 IWPC F2 IWPC F3
MAE PwW20 MAE PW20 MAE PwW20 MAE PwW20

Linear Regression 10.83 0.36 12.34 0.32 11.37 0.36 11.12 0.39
Multilayer Perceptron 11.00 0.37 12.23 0.33 12.37 0.35 14.05 0.26
MLP Bagging 10.97 0.36 12.62 0.33 11.85 0.35 14.44 0.24
MLP Random Subspaces 10.98 0.35 12.48 0.33 12.23 0.35 13.23 0.27
MLP Random Patches 11.10 0.34 12.53 0.33 12.73 0.33 15.37 0.22
Random Forest 12.73 0.29 13.63 0.31 12.70 0.32 14.67 0.24
Gradient Boosting 11.02 0.35 12.33 0.33 11.74 0.36 13.45 0.27

include framing the problem as a multiple-objective optimisation
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