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ABSTRACT
The anticoagulant drug warfarin is an effective preventative treat-
ment for strokes and heart attacks. However, it requires individu-
alised dosing that accounts for numerous factors. This is typically
performed by human experts, but software dosing is more effec-
tive and resource efficient. This study evaluated the accuracy of
17 learning algorithms on both a South African warfarin dataset
and the international IWPC dataset. The first 10 algorithms used
default or manually-optimised hyperparameters, but the remaining
7 algorithms were developed using genetic programming. These
automated algorithms produced the most accurate models and out-
performed the best published results in this field. This study also
examined the effects of parameter sets and missing data treatments
on model accuracy, which informed guidelines on how to imple-
ment dosing models in a South African clinical context.
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1 INTRODUCTION
Many individuals suffer from obstructive blood clots that lead to
strokes and heart attacks. The standard method for treating these
conditions is the use of anticoagulant drugs, such as warfarin.
Whilst effective, the drug has a narrow therapeutic range and severe
side-effects at extreme concentrations. This makes the precise dos-
ing of warfarin an important concern for clinicians. Unfortunately,
warfarin metabolism differs across individuals based on age, weight,
genetics, diet, drug interactions, and various pre-existing condi-
tions [18, 47]. International standards and dosing protocols have
attempted to formalise the dosing procedure, and software tools
exist to assist clinicians in making informed decisions, but the high
individual variability and risk of severe bleeding make the develop-
ment of more accurate dosing methods an ongoing priority. Many
studies have looked at applying statistical models to the problem
of individualised warfarin dosing. Accurate models would improve
the ability of clinicians to prescribe the correct warfarin doses to
their patients, whilst minimising the time required to do so. They
would also reduce the risk of severe haemorrhaging in patients and
the number of visits required to establish a therapeutic dose. This is
especially relevant in South Africa, where haematopathologists and
resources are in short supply. Unfortunately, warfarin datasets are
small and noisy, which requires the use of specialised data transfor-
mations and highly-optimised learning algorithms. Breakthrough
techniques are of significance to the medical research community
and could lead to a future in which warfarin therapy is safer and
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Figure 1: Example of the predictive performance of the
autoML-generated model that set new performance bench-
marks (PW20 of 48.81% and MAE of 8.41) on the interna-
tional IWPC dataset.

more automated – freeing up valuable human resources to address
other medical challenges.

This study investigated avenues for improved warfarin dosing
in South African patients, focusing on three research aims: (1) To
evaluate if models performed as well as, or better than, human
experts on a dataset of South African patients. (2) To determine
which data-manipulation practices caused models to produce the
most accurate and robust warfarin dose predictions in general. And
(3) to evaluate if models trained using contemporary techniques
could outperform the best published results in warfarin dosing1.

A comprehensive review of the 16 most notable studies in auto-
matedwarfarin dosing revealed promising algorithms and strategies
that were utilised in investigating the research aims. Using a stan-
dard international warfarin dataset [48], alongside warfarin records
provided by the pathology group PathCare, this study evaluated 17
promising machine learning algorithms.

Section 2 provides background knowledge on warfarin metab-
olism and current dosing practices before examining promising
avenues for both manual and automated machine learning. Section
3 outlines the methods used to develop and evaluate learning al-
gorithms on local and international datasets. In section 4, a novel
machine learning pipeline is presented. This, along with manually-
optimised algorithms, is evaluated on multiple datasets in section
5. Finally, the paper highlights key concerns before drawing con-
clusions and outlining avenues for future work.

1From Liu et al. 2015 [25]
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2 BACKGROUND
Warfarin causes an anticoagulant effect by inhibiting vitamin K-
dependent clotting factors. It has achieved popularity and wide-
spread usage due to its superior bioavailability and relatively pre-
dictable onset, but has a very narrow therapeutic range and poses
serious risk of haemorrhaging at high doses [17]. There are two
different phases of warfarin dosing – initiation and maintenance.
The initiation dose is the quantity of warfarin administered to a
patient beginning anticoagulation therapy, whilst the maintenance
dose is used to keep a patient in a therapeutic range once war-
farin has already saturated their system. Simple algorithms guide
clinicians in administering an appropriate initiation dose [2]. The
maintenance dose, however, can be incredibly unpredictable. At
this phase of treatment, the patient is tested very infrequently, so
the maintenance dose must be precisely tuned to keep them within
therapeutic levels. To complicate this, there is substantial variation
in how individuals respond to warfarin. Many clinical factors, such
as age, race, weight, height, and smoking status must be taken into
account when determining warfarin dosage [17]. There are also
genetic factors. Around 40% of the individual variation in dose re-
quirement can be attributed to polymorphisms in only two genes –
CYP2C9 and VKORC1 [18]. There are also 26 foods and drugs known
to interact with warfarin. These include a number of antibiotics,
cardiac drugs, three drugs that act on the central nervous system,
vitamin K-rich foods, and even large quantities of avocado [47].

2.1 INR and Traditional Dosing
To standardise the process of anticoagulant monitoring, the World
Health Organisation established the international normalised ratio
(INR) as a universal reference value [22]. INR is regionally cali-
brated [33], so direct comparison of values across geography and
demographics is possible. The recommended therapeutic range for
oral anticoagulation therapy is an INR between 2.0 and 3.0 for most
patients [1]. It has been found that using tighter target ranges for
maintenance dosing does not achieve any improvement in antico-
agulation control [28]. For the purposes of treatment, any measures
within this ±0.5 range are equally good – an important factor to
consider when evaluating the predictive performance of any dosing
protocol.

Traditionally, maintenance doses are determined by clinicians
on a individual basis and adjusted regularly to ensure an INR in the
desired range [20]. Due to the low availability of haematopatholo-
gists in South Africa, organisations like PathCare send basic patient
details (like age, sex, last INR, current medications) to a few remote
experts who evaluate the case and send back a prescribed dosing
regimen. The imprecision and error involved in manual dosing
has resulted in a concerted effort to (at least partially) automate
warfarin dosing [20].

2.2 Software-Assisted Dosing
There are two widely-used equations for warfarin dosing in clinical
practice. Gage et al. [11] used an exponential function based on
a dozen clinical and genetic factors; whilst the International War-
farin Pharmacogenetics Consortium (IWPC) [23] used least-squares
linear regression to develop their equation based on age, height,
weight, race, and VKORC1 and CYP2C9 genotypes. It is now very

common for medical staff to make use of a dosing algorithm to
guide their decisions, since they have been found to increase antico-
agulant control [21]. As a natural progression, many also make use
of software tools to guide this process. Software-assisted dosing has
been found to be safer, more therapeutic, and more cost-effective
than manual dosing [19, 20, 34]. Whilst these tools are invaluable
to clinicians, there exists much room for improvement. Since 2008,
machine learning approaches have been shown to offer improved
results over the current dosing software [27].

2.3 Machine Learning Algorithms
The goal of automated dosing is to provide a model with a vector of
patient parameters (age, height, weight, etc.) and have it predict the
target value – in this case, weekly warfarin dose in mg. In order to
develop such a model, learning algorithms are provided with a set
of labelled examples called the training set. Each example features
the parameters for a patient as well as the true weekly dose for that
patient. The learning algorithm performs regression on this data,
producing a model of the relationships between the parameters and
the weekly dose. This model is then tested on unseen data, with its
predicted doses being compared to the true doses. Any model that
can successfully predict warfarin doses given to patients in the past
can be used to suggest doses for new patients in the future. This
means that real-world performance of models can be accurately
estimated without the need for clinical experiments.

2.3.1 Studies on Warfarin Dosing with Machine Learning. The
16 notable studies in this field [4, 12, 13, 15, 16, 23–25, 27, 29, 36, 38–
40, 46, 50] were grouped into two categories: (1) those who used
bespoke datasets, and (2) those who used the IWPC dataset. It is
difficult to replicate the findings of the 13 studies in category 1, so
the value of their findings was down-weighted accordingly. The
three studies in category 2 [23, 25, 38] made use of the public IWPC
dataset [48] and thus provided better insight into the relative per-
formance of candidate algorithms. Linear regression (LR), support
vector regression (SVR), lasso regression (LAS), and regression trees
(RT) were popular in the literature. More recently, artificial neural
networks (ANNs) – specifically the simplest kind, known as multi-
layer perceptrons (MLPs) – have been used to improve predictive
performance [15, 27, 50].

2.3.2 Algorithm Optimisation. The learning algorithm chosen
has a notable impact on model accuracy and robustness. Moreover,
the precise hyperparameters chosen for the algorithm drastically af-
fect performance. Selecting the best learning algorithm for the data
and then optimising its hyperparameters is a challenge whenever
machine learning is applied. The most common approach is for an
expert to repeatedly retrain with various learning algorithms and
tweak their parameters until performance is maximised. Another
approach is the use of automatic machine learning (autoML), which
employs meta-algorithms to automate the task of optimisation. One
promising approach to autoML is genetic programming.

2.3.3 Genetic Programming for Optimisation. Genetic program-
ming (GP) emulates the process of natural selection to optimise
computer programs. In this case, the programs are machine learn-
ing algorithms and data processors. Each is encoded as a gene,
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with parameters randomly changing according to a defined muta-
tion rate. As with biological evolution, successful genes propagate
through the population and the most successful combinations of
those genes seed the next generation [3]. This increases perfor-
mance over time. By simulating many generations with the right
mutation rate and population sizes, novel programs with high per-
formance are produced. GP has been shown to develop intelligent
systems in a number of mathematical and computational domains
[8, 10, 14, 41] and is of extreme interest to computer science in
general. Figure 2 depicts how a Tree-based Pipeline Optimization
Tool (TPOT) automates the nebulous and tedious aspects of the
machine learning process [30]. Data preprocessors and learning
algorithms are used as the genetic elements in TPOT and combine
to produce machine learning pipelines. These handle the data from
feature extraction through to parameter optimisation [30]. The
TPOT framework was developed atop the Distributed Evolutionary
Algorithms in Python (DEAP) framework [9] and has been shown
to produce a significant improvement over basic machine learning
methods, with little input or prior knowledge from users [30].

2.3.4 CombiningModels with EnsembleMethods. Ensemblemeth-
ods combine the outputs from several models to obtain better overall
performance. This has been found effective in a number of war-
farin dosing studies [4, 15, 25]. Some ensemble methods such as
random forest regression are specific to a class of algorithms – in this
case, regression trees – whilst others like voting and boosting are
meta-algorithms that work for any homogeneous or heterogeneous
collection of models [7, 35].

2.4 Pharmacogenetics
Studies on warfarin dose prediction use one of two input classes
to develop models – either only clinical data, or both clinical and
genetic data. Common clinical factors include age, body mass, and
height. Pharmacogenetic factors include the genotypes for CYP2C9
and VKORC1, which affect warfarin metabolism [18]. Many stud-
ies report improved model performance when using both clinical
and pharmacogenetic data [23, 29, 32, 37, 45]. Two recent stud-
ies evaluated genotype-guided (pharmacogenetic) dosing under
clinical conditions, finding that it brought patients to their ther-
apeutic range more quickly and safely [44] and was significantly
more effective for long-term anticoagulation therapy [6]. Unfortu-
nately, genetic testing is still very expensive, resource intensive,
and unavailable in many parts of the world [15].

2.5 Performance Benchmark
A notable study is that of Liu et al. in 2015 [25], which compared the
average performance of 9 learning algorithms on the International
Warfarin Pharmacogenetics Consortium (IWPC) dataset [48]. They
filtered-out patients missing height, weight, age, or genotype data,
and patients not at a stable warfarin dose – leaving 4798 patients
remaining. Liu et al. then obtained seven clinical and two pharma-
cogenetic co-variates with step-wise regression. These were used
as input parameters2 for the models. Using libraries in R, they im-
plemented 9 algorithms with default parameters – linear regression

2See 3.1.2

Figure 2: Illustration of the steps in the typical supervised
learning workflow that are automated by the Tree-based
Pipeline Optimization Tool (TPOT). Image from Olson et al.
[30].

(LR), artificial neural network (ANN), regression tree (RT), multi-
variate adaptive regression splines (MARS), boosted regression tree
(RT), support vector regression (SVR), random forest regression
(RFR), lasso regression (LARS) and Bayesian additive regression
tree (BART). They obtained the average performance of each al-
gorithm3 with 100 rounds of 80/20 re-sampling from the filtered
dataset. Whilst the main focus of their study was evaluating a range
of off-the-shelf algorithms across dosage ranges and racial groups,
their top results4 in the combined cohort served as a benchmark
for performance on the IWPC data.

3 METHODOLOGY
This section details the process by which the three research aims
were investigated, with experiments designed to falsify each hy-
pothesis. It also describes the protocols used to develop, train, and
evaluate machine learning systems in a manner that adhered to
best practices.

3.1 Experiment Design
The study consisted of three distinct experimental lines, each with
their own methodology and criteria.

3.1.1 Experiment 1: Humans vs. Algorithms. The first experi-
ment evaluated the accuracy of experienced human clinicians com-
pared to learned models. This was possible due to the fact that the
PathCare dataset contained records of multiple visits for a small
subset of patients (N = 1135). Those records were compared with
the performance of models trained on a subset of the data (N =
3696). Because the human experts dosed the patients based only
on their electronic records (with no direct contact), they had lit-
tle informational advantage and their performance could be fairly
compared with that of a model. In examples from other domains,
learned models outperform experienced humans when datasets and
feature-spaces are sufficiently large. It was, therefore, hypothesised
that models derived from the dataset would fall at least within 5%
of human performance. It is noted that this was not an audit of
clinician performance in general, but rather relative performance
given the state and quality of the provided dataset.
3In terms of PW20 and MAE (see 3.7).
4PW20 = 46.35%, MAE = 8.84.
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3.1.2 Experiment 2: Data-Manipulations. This two-part experi-
ment evaluated the effects of data-manipulations on the resulting
models, investigating the use of different parameter sets as well as
different treatments for missing data.

2A: Comparison of Models Across Parameter Sets. This experi-
ment assessed the relationship between the feature-richness of a
parameter set and the performance of the resulting model. This
included three sets of parameters, which are illustrated in figure 3
and detailed below.

(1) The set common to PathCare and IWPC (2): Age in
years, sex

(2) The easily-implemented clinical set (6): Age in years,
sex, race, height in cm, weight in kg, smoking status

(3) The set used by Liu et al. (9): Age in years, race, height in
cm, weight in kg, smoking status, amiodarone use, VKORC1
genotype, CYP2C9 genotype, use of enzyme inducer5

Assuming that the features used were correlated to warfarin metab-
olism, it was predicted that there would be a positive relationship
between the feature-richness of a parameter set and the perfor-
mance of the resulting model.

2B: Comparison of Missing-Data Treatments. This experiment
compared the effects of three different missing data treatments on
model performance. The treatments were:

(1) Excision: Removing whole records if they contained any
missing values.

(2) Imputation of Mean: Replacing missing values with the
mean value of the rest of the values for that feature.

(3) Imputation of Mode: Replacing missing values with the
modal value of the rest of the values for that feature.

Excision was implemented with the .dropna function in the pandas
data-processing library, whilst both imputation strategies were im-
plemented with the Imputer class in sklearn.preprocessing. Crucially,
the same techniques were not applied to both the training and
evaluation data, as that would have altered the size of the holdout
set and invalidated the results. Instead, both imputation of mean
and imputation of mode were tested on the validation set for each
experiment.

In clinical practice, it would be necessary to dose patients even
if some data points were absent. It was predicted that imputation
techniques would successfully tolerate missing data and perform
within 5% of the excision technique.

3.1.3 Experiment 3: New Techniques. The final experiment eval-
uated new techniques for warfarin dose prediction by comparing
them to the best results in the academic literature. The 2015 study
by Liu et al. [25] was used to obtain benchmarks. Given the rate of
advancement in the field of machine learning – both in technology
and methodology – it was predicted that some new techniques
would yield superior results to those of Liu et al. when using the
same dataset, sample sizes, and parameters. The techniques evalu-
ated included manually optimising 4 promising learning algorithms
using k-fold cross-validation (see 3.6.2) on the training data, as well
as using an autoML approach to optimise learning pipelines with
genetic programming (see 4).

5carbamazepine, phenytoin, or rifampin / rifampicin

Figure 3: Illustration of the overlapping parameter sets used
for experiment 2A.

3.2 Learning Algorithms Used
Two different collections of learning algorithms were used to con-
duct the above experiments.

3.2.1 Standard Algorithms. This collection of 6 classical ma-
chine learning algorithms was used to obtain generalised results in
experiments 2A and 2B. All algorithms were implemented through
the scikit-learn library [31] with hyperparameters set to their default
values6. The algorithms were linear regression (LR), multi-layer
perceptron (MLP), regression tree (RT), support vector regression
(SVR), lasso regression (LAS), and Bayesian ridge regression (BR).

3.2.2 Optimised Algorithms. This collection of 11 optimised
algorithms was used to establish best predictive performance in
experiments 1 and 3. It contained 4 algorithms from scikit-learn –
lasso Lars (LARS), multi-layer perceptron (MLP), regression tree
(RT), and support vector regression (SVR) – which were each man-
ually optimised using 10-fold cross-validation on the training data.
This optimisation included both hyperparameter tuning and data
preprocessing. The collection also contained 7 machine learning
pipelines generated through genetic programming (see 4).

3.3 Datasets
Two datasets of warfarin records were used for this study. The
globally-standard IWPC dataset was used primarily for comparing
new techniques to those in the literature, whilst the proprietary
PathCare dataset was used to evaluate model performance against
human experts in a South African context. Analysis revealed that
both datasets had similar distributions of weekly warfarin dose,
INR, and age. A numerical comparison of the cohorts is provided
in the supplementary material (see 10).

3.3.1 IWPC Dataset. The International Warfarin Pharmacoge-
netics Consortium (IWPC) dataset [48] of 6256 patients has been
used in a number of notable studies [23, 25, 38] and is the standard
reference point for newmethodology in automated warfarin dosing.
The dataset was compiled collaboratively and includes data from 22
research groups from 9 countries [23]. As a result, some patient data
is missing. When filtering out entries that are missing important
clinical values – INR, warfarin dose, weight, height, and age – the
resulting dataset contains 4529 records7.

3.3.2 PathCare Dataset. This dataset was provided by the South
African pathology group PathCare specifically for use in this study.
As with the IWPC dataset, patients were de-identified, but for legal
reasons this dataset was not made publicly available. Unlike the

6With the exception of the regression tree, whose default max_depth value of None
was set to 10 to constrain the model to the scope of the task.
7This concurs with the methodology of Liu et al.’s 2015 study on the same data [25].
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IWPC dataset, no pharmacogenetic data was available and very
limited clinical data was collected. Most notably, height, weight, and
ethnicity data was absent. Also unlike the IWPC case, the PathCare
data was provided as a mySQL dump file. Extensive data cleaning
and reformatting was performed to produce a research-focused
.CSV file. Although the mySQL dump contained over 47000 patient
records, only 8985 viable records were found – 69% of which were
from patients with only a single record, with the remainder being
from the 1135 patients who had multiple visit records. From the
total dataset, only 4621 (51%) patient records showed an INR in their
target INR range. This dataset also featured 7-day warfarin dosages
(in mg) for both taken and prescribed dosages. The weekly total
doseswere computed for all records. This allowed direct comparison
with the IWPC dataset, which lists only the weekly dose.

3.4 Feature Extraction
Machine learning algorithms require a two-dimensional matrix
of input values and a one-dimensional vector of target values. To
perform the requisite mathematical operations, all values must
be numeric. Whilst some data fields – INR values, height in cm,
and warfarin dose – were already in continuous format, other data
was in categorical or text format and required vectorisation. This
process generates a feature set larger than the number of parameters
provided as input. For instance, the liu et al. parameter set included
9 parameters, but resulted in 58 features.

3.4.1 Vectorisation of Categorical Data. Figure 4 illustrates vec-
torisation of categorical data using the arbitrary example of colour.
In the IWPC dataset, an example of categorical data was the "Race
(OMB)" field which has 7 classes – the 7 official OMB values for
racial groups in the United States. Vectorising this category into a
sparse matrix produces 7 features, with each containing a binary
digit. This technique is superior to integer indexing as it assumes
no relationship between the classes, which results in more accurate
models. This is why it is considered best practice [35]. Whilst many
preprocessing libraries can vectorise automatically, they are not
explicitly aware how many classes exist. Instead, they rely on im-
plicit assumptions from howmany unique values they observe. This
could result in a different feature-space depending on the dataset
used, which meant that trained models could not be evaluated on
another dataset unless both contained all possible classes. Moreover,
automatic tools ignore missing values but include "NA", "N/A", etc.
as categories. To combat this difficulty, the classes for each param-
eter were explicitly encoded for each dataset. Whilst painstaking,
this approach resulted in more accurate representations of the data
as well as an appropriate feature-space.

3.4.2 Vectorisation of Text. Text strings – such as lists of which
medications patients were taking – posed a similar challenge. Once
again, sparse matrix format was the preferable output. When pro-
cessing text strings, the bag-of-words technique [35] was used to
find the frequency of terms. Important and frequent terms were
identified and a new dummy-feature was created for each. Software
tools were written to search for these terms in the text strings and
insert values into the corresponding feature. In the case of medi-
cations, most drugs had at least two different trade names as well

Figure 4: Example of vectorising categorical data into a
sparse matrix format. In this instance, the colour category
has three classes – red, green, and blue. This illustrates how
one parameter (colour) can become three features and miss-
ing data is absorbed as a row of zeros. Note that blue is not
seen in this dataset, so it must be explicitly encoded into the
vectorisation function for this format to generalise.

as generic names. Moreover, many drug names were difficult to re-
member or spell, resulting in many similar (but not identical) terms.
Finding common mistakes and alternate names for each medication
was a slow, manual task, but resulted in a generalised sparse matrix
format – an ideal input for a learning algorithm.

3.5 Dataset Splitting
To distinguish a model that overfits the training data from one that
accurately fits the underlying relationships, data must be withheld
until the end of a study and then used to quantify the general
accuracy of that model [35]. This is know as the holdout method. For
this study, selection was performed at random from the datasets to
ensure that the distributions were similar between a training set and
its corresponding validation set. The PathCare dataset was scaled8
and split in the same ratio as the IWPC data, producing datasets of
nearly identical size and value distributions9. This allowed direct
comparison between both datasets with limited confounding factors.
The overall splitting protocol is illustrated in figure 5 and detailed
below.

The cleaned and transformed PathCare dataset (PATH-whole)
contained 8985 data points. For use in experiment 1, this data was
split by grouping patients who had visited more than once away
from those who only had a single visit. This resulted in a dataset
where each patientID was unique, named PATH-SV (for single visit),
and a smaller dataset of 1135 patients with multiple visits (totalling
2792), named PATH-MV (for multiple visit). For experiment 2, the
PATH-whole set was filtered for patient records where the INR was
in the patient’s target range. This subset of therapeutic patients con-
tained 4621 records and was randomly split 80/20 into the PathCare
training (PATH-T) and PathCare validation (PATH-V) sets. This
was done patient-wise and not record-wise (see 3.9.2), ensuring no
confounding factors affected model evaluation.

After filtering out records with crucial fields missing10, 4529
records remained in the IWPC set. These were randomly split 80/20
to create the IWPC training (IWPC-T) and IWPC validation (IWPC-
V) sets. This nuanced splitting strategy provided the best possible
subsets for training and robust evaluation under each of the experi-
mental conditions.

8By excluding the non-therapeutic entries.
9This was verified by statistical analysis in the supplementary material (see 10).
10Using criteria from Liu et al. [25].
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Figure 5: Illustration of dataset splitting protocols for both
IWPC and PathCare datasets. To ensure best practice, the
holdout sets (IWPC-V and PATH-V) were kept in a withheld
directory until final evaluation.

3.6 Training
A wide variety of algorithms (see 3.2) were used to train the predic-
tive models. Most of these were implemented using the scikit-learn
library [31] in Python 3.6 and optimised by tuning the hyperparam-
eters supported by the library. In many cases, two instances of the
algorithm were used, where the first was manually optimised for
the PathCare data and the second for the IWPC data. This allowed
the best performances for each algorithm on each dataset to be
compared directly.

3.6.1 Feature Selection. Feature selection was performed man-
ually using acquired domain knowledge. In datasets with so few
features, all of which were pre-selected for their effect on warfarin
metabolism, manual selection was a reasonably efficient and reli-
able approach. For comparison purposes, the parameter set defined
by Liu et al. (see 3.1.2) was used, so no feature selection was nec-
essary. In the case of the PathCare dataset, there were sufficiently
few features that manual selection was viable.

3.6.2 Cross-Validation (CV)Methods. Two techniqueswere used
to estimate performance during training. The first was standard
k-fold cross-validation – where the training set is randomly split
into k subsets of identical size and each subset acts as the test set
for exactly one iteration [42]. The second was Monte Carlo cross-
validation – where the dataset is randomly split into train and
test subsets for many repetitions [49]. A Monte Carlo CV (MCCV)
function was built using the train_test_split function in scikit-learn
and run for 100 iterations with 80/20 splits to find convergent results
for the models. These helped to select a value of k for k-fold CV
that gave reliable results in a much shorter period of time. k-fold
CV was implemented using the KFold tool in scikit-learn.

For k = 10, the performance estimation was fast, accurate, and
consistent with MCCV. This combined approach was utilised to
facilitate rapid yet robust evaluation of models during manual opti-
misation.

3.6.3 Preprocessing. Manually-optimised algorithms were en-
hanced with one of two preprocessing tools available in scikit-learn:
StandardScaler – which removes the mean and scales the data to
unit variance – and RobustScaler – which centres and scales the data
based on percentiles. The automatically-optimised algorithms se-
lected their own preprocessing methods from sklearn.preprocessing.

3.7 Clinical and Statistical Metrics
Appropriate metrics were chosen to assess both the clinical and
statistical accuracy of the models. INR has a therapeutic range
of 2.0-3.0 in most patients [1] and using tighter target ranges for
maintenance dosing does not achieve any therapeutic advantage
[28]. The chosen metrics accounted for that, and were consistent
with metrics used in related studies – allowing direct comparisons.

(1) Mean absolute error (MAE) is widely used across warfarin
prediction studies [12, 15, 25, 26, 38, 39, 43, 50].

MAE =

∑n
i=1 |yi − xi |

n
(1)

where yi is the actual dose and xi is the predicted dose.
(2) Percentage of patients with dose estimates within 20%

of the actual dose (PW20)was used by a number of notable
studies [12, 23, 25, 50]. It reflects the fact that being within
0.5 points of the target INR is clinically sufficient.

PW 20 =
∑n
i=1 f (pi )

n
(2)

where f (pi ) for patient pi is 1 if 0.8yi < xi < 1.2yi , else 0;
xi is the predicted dose, and yi is the true dose.

(3) R2-value (coefficient of determination) is the gold stan-
dard for statistical comparison and was utilised in numerous
studies [5, 12, 16, 25]. It highlights how well the model fits
the data as a whole. R2 was used to verify that the MAE
and PW20 results were legitimate, and as a third metric to
differentiate algorithms with similar performance.

3.8 Evaluation Protocol
For experiment 1, human performance was estimated using PATH-
MV (see 3.9.1). This was compared with the 11 optimised models
trained on PATH-T and evaluated on the withheld PATH-V set. For
experiments 2A and 2B, the 6 standard models were trained on
PATH-T and IWPC-T and then evaluated on the withheld PATH-V
and IWPC-V sets respectively. This was repeated for each parameter
set and each missing data treatment, as detailed in section 3.1.2. For
experiment 3, the 11 optimised models were trained and evaluated
using 80/20Monte Carlo CV with 100 iterations on the filtered IWPC
dataset. This was similar to the 100 rounds of 80/20 re-sampling
performed by Liu et al. [25] and used the same filtering parameters,
allowing for a direct performance comparison across studies. To
determine if the results generalised, the holdout method was used
– models were trained on IWPC-T and evaluated on IWPC-V. All
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MAE and PW20 scores from each experiment were verified by
examining the R2 values11.

3.9 Methodological Challenges and Solutions
3.9.1 Estimation of Human Performance. Experiment 1 com-

pared the performance of clinicians to models on a subset of the
PathCare dataset that contained patients withmultiple visits (PATH-
MV). Because no clinical experiment could be run whereby models
dosed real patients, predictions were compared to final therapeutic
doses. Because those final therapeutic doses were only available in
cases where the patient was successfully dosed, estimated therapeu-
tic doses were needed for the remaining cases. A novel technique
was developed to impute those estimates with random sampling
from a Gaussian distribution with the same mean and variance
as the PathCare data12. As a result of the central limit theorem, a
good estimate emerged when averaged. This method ensured a fair
evaluation by eliminating the selection bias on the data used to
measure human performance.

3.9.2 Patient-wise Splitting. The PATH-V and PATH-T datasets
were originally produced by splitting record-wise in the same way
as the IWPC dataset. Because the PathCare data contained multiple
visits for some patients, the PATH-V and PATH-T sets were pro-
cessed to ensure that no patients had records in both sets13. A novel
technique was used to handle records of patients that appeared in
both sets by swapping them out with a randomly-chosen record
from the other set. This was repeated until no patientIDs were seen
across both sets. The swapping procedure emulated the effect of
splitting the PathCare data patient-wise, but without the arduous
task of ensuring that the 80/20 ratio was preserved.

3.10 Software Architecture
The project was written in Python 3.6 with PEP8 conventions, full
documentation, and a style focused on modularity. Functions and
classes were removed if they became redundant and all code was
regularly refactored. Code readability was a priority, as it lets ex-
perts in the domain of warfarin dosing more easily understand (and
augment) the program logic – allowing those with only an inter-
mediate understanding of Python to conduct further research. The
code was open-sourced at github.com/gianlucatruda/warfit
and welcomes improvements.

4 OPTIMISATIONWITH GENETIC
PROGRAMMING

A Tree-based Pipeline Optimisation Tool (TPOT) was used to gener-
ate high-performing pipelines through genetic programming [30].
Cleaned versions of PATH-T and IWPC-T were given as input and
many generations of supervised learning yielded the best perform-
ers – optimised meta-algorithms that would likely never have been
found through manual implementation and tuning. TPOT accepts
bespoke scoring functions as its fitness function. The functions for

11Full details for all metrics are shown in the supplementary material (see 10).
12Details of this method can be found in the online supplementary material (see 10).
13as that may have conferred unrealistic meta-knowledge to the learning algorithms

Figure 6: Graphical depiction of the best performing learn-
ing algorithm, pipeline 5 (PL5), the result of optimisation
through genetic programming with TPOT.

PW20 and MAE were tested, as was a hybrid of the two:

hybrid =
PW 20
MAE2

(3)

Many instances of TPOT were run using different evolutionary
parameters. The number of generations ranged from 50 to 10000,
the number of offspring from 5 to 100, and the k used in k-fold CV
from 5 to 30. Over all these instances, the 7 best performers were
exported and evaluated against human-developed algorithms.

4.1 Pipeline 5: The Top Performer
Pipeline 5 (PL5) first performs one-hot encoding on the input data,
then passes that result to a stacking estimator – which adds syn-
thetic features derived from ridge regression with cross-validation
– and then provides the resulting data as the input to an ensemble
of boosted regression trees using the least absolute deviation loss
function. This is illustrated in figure 6, which also displays the
hyperparameters.

5 RESULTS AND DISCUSSION
This section details how learning algorithms were able to perform
comparably with human experts on South African data. It then
demonstrates the efficacy of imputation for handling missing data
and the positive relationship between feature-space and model
accuracy. Finally, it is shown that a TPOT pipeline outperformed
the best models in the published literature. Full results are provided
in the supplementary material (see 10), including R2 verification.
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Figure 7: Comparison of estimated human dosing perfor-
mance compared to the best learning pipeline (PL2), an un-
tuned linear regression algorithm (LR), and a tuned multi-
layer perceptron (MLP). The human performance was esti-
mated using the PATH-MV dataset and averaged over 50 it-
erations.

5.1 Models and Human Experts
Figure 7 compares estimated human performance with the mean
performance of three of the 17 models trained on PATH-T and
validated on PATH-V14. The best-performing parameter set15 and
mean imputation for missing values were used for both training
and validation. The figure shows only the best overall performer
(pipeline 2), the simplest algorithm (untuned linear regression), and
an example of a multi-layer perceptron with manually-tuned hy-
perparameters. The human estimate outperformed the best learner
by only 7.1% in terms of PW20, but the learner had an MAE 11.3%
better. This supports the initial hypothesis that learned models
could measure up to human experts. These findings suggest that
even with the limited format of the current PathCare database,
learning algorithms can perform as well as human experts when it
comes to prescribing therapeutic maintenance doses. Whilst more
customised algorithms (like PL2) performed slightly better, even
an off-the-shelf linear regression algorithm performed favourably
compared with human estimates.

5.2 The Effects of Data-Manipulations
Figure 8 compares the mean performance of the 6 standard learn-
ing algorithms across the common, clinical, and liu parameter sets
outlined in section 3.1.2. Mean imputation was used to handle all
missing data in both training and validation sets and results were
averaged over 20 iterations. Despite the common parameter set
containing only age in years and sex, it resulted in different feature
sizes in the PathCare and IWPC datasets. This was because the
IWPC used 9 age categories instead of a continuous value like in
the PathCare set. Despite this, the common parameter set resulted
14With results averaged over 10 iterations.
15path2 = sex; year of birth; and sparse vectors for aspirin use, paracetamol use,
amiodarone use, atrial fibrillation, deep vein thrombosis, and valve replacement.

Figure 8: Comparison of mean performance across parame-
ter sets for a collection of 6 machine learning algorithms –
LR, RT, SVR, MLP, LASSO, BR.

in lower mean performance on the IWPC dataset – 5.7% worse in
terms of PW20 and 11.3% worse in terms of MAE. This is most
likely due to the fact that the PATH-T and PATH-V sets were taken
from only the therapeutic cases in the PathCare data, which may
have made data points slightly more consistent than in the IWPC
set. A minor discrepancy across datasets was to be expected and
was quite small relative to the other results. Overall, the learning
algorithms performed similarly across both the PathCare and IWPC
datasets, which stands to validate the methodology. The clinical
and liu parameter sets resulted in far more features and increased
performance in terms of both PW20 and MAE. The liu parame-
ter set was the only one to include pharmacogenetic parameters.
This caused a dramatic increase in performance over the common
parameter set – 29.5% in terms of PW20 and 21.0% in terms of
MAE. This supports the value of pharmacogenetic factors in pre-
dicting maintenance doses. In general, as relevant parameters were
added, the predictive performance increased, suggesting a positive
relationship exists. This supports the hypothesis in section 3.1.2.
Moreover, these results suggest that even without pharmacogenetic
data, easily-obtained clinical data such as height, weight, race and
smoking history can boost performance by at least 10%.

Figure 9 compares treatments for missing data for the 6 standard
learning algorithms. All models were trained on IWPC-T using the
liu parameter set (58 features) and evaluated on IWPC-V16. Both im-
putation treatments slightly outperformed the excision treatment
in terms of both PW20 and MAE. Imputed mean performed slightly
better than imputed mode and was used throughout the other ex-
periments17. These results support the hypothesis that imputation

16To keep the size and contents of the validation set consistent, the same treatment
was used on missing data in the validation set each time, regardless of the treatment
method being investigated.
17It should be noted that imputed mode outperforms imputed mean when imputed
mode is also used on the validation set, but the difference is less significant. It would
seem that either treatment can be used, but that best performance comes when using
the same treatment on both the validation set and the training set.
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Figure 9: Comparison of mean performance of treatments
formissing data for the 6 standard learning algorithms – LR,
RT, SVR, MLP, LASSO, BR.

could be used to handle missing data without compromising accu-
racy. This bodes well for clinical implementation, as imputation
allows for more robust prediction models.

The difference between excision and imputations treatments
was likely this small because the datasets and feature sizes were
relatively small. This difference could be expected to scale as either
the features or examples become more numerous. A likely reason
for the similar performance between imputation methods is that the
minor variations in generated values became almost unnoticeable
when models preprocessed the data during training and evaluation.

5.3 Performance of New Techniques
Figure 10 compares the best and typical learning algorithms in the
Liu et al. study [25] with the best and typical algorithms from this
study. The same data and parameter set was used in each case, with
100 rounds ofMonte Carlo CV. This study’s top performing learning
algorithm was pipeline 5 (PL5), generated through TPOT (see 4).
It outperformed Liu et al.’s multiple adaptive regression splines
(MARS) learner by 5.3% in terms of PW20 and 4.9% in terms of
MAE. This supports the hypothesis that contemporary techniques
could improve the best results on IWPC data. The holdout method
verified that these results generalised to within 5% on the withheld
IWPC-V data18.

This study’s tuned multi-layer perceptron (MLP) outperformed
Liu et al.’s MLP by 7.3% in terms of PW20, but performed 3.2% less
well in terms of MAE. This suggests that manually tuning hyperpa-
rameters will tend to favour one performance metric (such as PW20)
at the expense of others. With genetically-generated pipelines and
hybrid metrics, however, new learning algorithms can be created
without expert domain knowledge. Moreover, the autoML models
can significantly outperform those of manually-tuned algorithms.
This, and the superior performance of PL5, supports the efficacy of
autoML techniques in warfarin dosing.

18See the full results and verification in the supplementary material (see 10).

Figure 10: Comparison of Liu et al. best performer (MARS)
andmulti-layer perceptron with this study’s best performer
and multi-layer perceptron. PL5 set a new performance
benchmark for warfarin dosing. Liu et al. results were taken
from table 2 of their 2015 paper [25].

5.4 Replicability
Replication is of the utmost importance in the scientific process. Ac-
cordingly, this project facilitated easy replication by open-sourcing
the code. Given that the IWPC dataset is in the public domain19 and
the code for this project is fully-documented, replicating most of
these results should be trivial. This paper also details all methodol-
ogy employed. Unfortunately, the PathCare dataset remains propri-
etary, but given the potential impact of these findings, PathCare is
encouraged to replicate these results using the provided resources
as guidelines. The author can be contacted via the project repository
for further details where necessary.

6 ETHICAL AND PROFESSIONAL ISSUES
PathCare de-identified the individuals in their dataset, rendering it
impossible for anyone to link data points back to the patients from
which they came. The dataset remains private. Ethics clearance
for this study was obtained via the Faculty of Science Research
Ethics Committee. In the event of publication, the guidelines of the
UCT Authorship Practices Policy will be observed, with contributing
parties being acknowledged for their share of work, and intellectual
property derived from the project being subject to UCT’s Intellectual
Property Policy. PathCare provided the dataset with no conditions
beyond ethics approval. The author declares no conflict of interest.

7 LIMITATIONS
Most fields in the PathCare database were of type varChar, which
allows any textual input. This made erroneous formatting and
misplaced data ubiquitous, which reduced the number of viable
records and may have reduced the overall performance. Moreover,
the limited number of visits for most patients in the dataset suggest
that many individuals mistakenly had multiple patientIDs assigned

19www.pharmgkb.org/downloads
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to them, with an impact on the results of both the models and
human estimates. The database currently does not accommodate
important clinical information such as height, weight, and race –
all of which would have drastically improved dosing accuracy.

The IWPC dataset is compiled from 22 research groups from
nine countries, each with different protocols and equipment. This
results in noisy data and missing values, lowering the predictive
accuracy of models. In clinical implementation, increased accuracy
is likely (given sufficient data). It is also known that the impact
of CYP2C9 and VKORC1 genes varies across races [25]. Current
data is mostly derived from "White" and "Asian" racial groups in
developed nations, so it is likely that current pharmacogenetic
implementations impart bias upon models.

8 CONCLUSIONS AND FUTUREWORK
The experiments demonstrated that learning algorithms can pro-
duce models at least as effective as human experts at prescribing
warfarin maintenance doses. This was observed in the current Path-
Care dataset – which is relatively small and poorly structured –
and even using the simplest techniques, such as linear regression.
If provided with richer, more comprehensive data, learning algo-
rithms would likely outperform haemetopathologists and pave a
path to automated dosing.

Whilst simpler techniques are outperformed by more advanced
ones, the difference was marginal in datasets with smaller feature-
space. As the number of relevant parameters was increased, the
performance advantage of more complex learning algorithms also
increased. This suggests that as more clean data becomes available,
advanced algorithms will become necessary to fully utilise the
available data.

Unfortunately, data cleaning and formatting consume dispro-
portionate amounts of time and require sacrifices to the quality
of the training data. One of the best routes to increasing model
performance would be to implement stricter data collection and
review protocols. This would increase the ratio of usable data and
likely result in more effective dosing.

Currently, PathCare collects very few of the clinical metrics
relevant to accurate warfarin dosing. Implementing new policies
and database schema to collect height, weight, race, and smoking
status would be of relative ease, but has been shown in both this
and many other studies to drastically improve the dosing accuracy
of models. Many studies have observed the benefits of pharma-
cogenetic data in warfarin dosing, and this study supports those
findings. Whilst this is valuable information, the requisite tests are
still highly inaccessible to South Africans. The resources required
for pharmacogenetic warfarin dosing are not yet justified by the
performance increases in the context of South African healthcare.

This study observed that imputation methods were an effective
means of dealing with missing data. This is especially important
in warfarin dose prediction, where datasets are both small and
incomplete. By imputing missing values instead of removing the
entire record, more data is available for training, which boosts
performance. Moreover, the ability to impute missing features is
essential to clinical application of these models, as it allows them
to dose future patients even if some parameters are not available –
which is a frequent occurrence in clinical practice.

This study found that automatic machine learning techniques –
in this case optimisation through genetic programming – were an
effective method of producing accurate models with limited domain
knowledge. This eliminates the need for machine learning expertise,
which drastically improves the resource efficiency and availability
of dose prediction. The automatically-generated learning pipelines
produced were not only simpler to attain than manually-tuned
algorithms, but also performed better. If this trend is not unique
to warfarin dosing, it suggests that autoML is a promising method
for the future of automated dosing in general, which is of huge
importance to computer science.

In their totality, the results of this study highlight how machine
learning techniques offer immense value to warfarin dosing in
South Africa. In the short term, organisations like PathCare could
begin implementing models as an aid to the human experts. This
is likely to reduce error rates and result in more effective dosing,
whilst creating a human-in-the-loop architecture that can be used
to enhance model performance going forward. In the medium term,
more feature-rich data would be collected and model performance
would improve accordingly. This would help transition toward a
future of automated warfarin maintenance dosing, which can free
up haematopathologists to address other pressing patient issues.
During that transition, improved predictions would reduce the time
required to get patients into the therapeutic range and reduce the
incidence of misdosing.

In future research, the findings of this study should be replicated
in other automated dosing problems. Some aspects of the findings
may be specific to warfarin dosing or to the datasets used to train
and evaluate the models. It is therefore crucial to establish how
general the findings are to the domain of drug dosing. There is also
much work to be done in creating a framework for testing new
techniques on the IWPC dataset, including robust tools and evalu-
ation metrics. This could be achieved by extending this project’s
open-sourced code, eliminating the need for future researchers to
re-create existing tools, and keeping conditions consistent – allow-
ing rapid evaluation of new techniques on a level playing field.
Ultimately, the greatest advances can still be made in compiling
more comprehensive warfarin dosing datasets from more diverse
cohorts, which can be used to re-evaluate the learning algorithms
and train even better models.
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