

 Computer Science Honours
 Final Paper 2018

Title: A Portable Large Volume Email Retrieval System

Author: Monyemoratho Breyden

Project Abbreviation: FINDMAIL

Supervisor: Associate Professor Hussein Suleman

Category Min Max Chosen
Requirement Analysis and Design 0 15 0

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 20

System Development and Implementation 0 10 10

Results, Findings and Conclusion 0 20 20

Aim Formulation and Background Work 0 10 10

Quality of Paper Writing and Presentation 0 10 10

Adherence to Project Proposal and Quality of Deliverables 0 10 10

Overall General Project Evaluation [requires explicit motivation from the
project supervisor]

0 0 0

 A Portable Large Volume Email Retrieval System
 Breyden Monyemoratho

 University of Cape Town, South Africa
 Computer Science
 mnybre002@myuct.ac.za

ABSTRACT
Email is present in all facets of daily life. A remarkable
amount of information resides in email archives. This
paper describes an attempt to develop a portable email
system that allows users to input large email archives
in various formats and accurately and efficiently
browse and search over the archive offline. This
approach to designing systems for preservation and
offline access is useful in areas with limited Internet
bandwidth such as in most African countries.
Experimental results confirm that users were satisfied
with the general design of the system and moreover,
that this system is effective and efficient.

CCS CONCEPTS
• Information systems → Information retrieval →
Specialized information retrieval • Software and its
engineering → Software libraries and repositories •
Software and its engineering ➝ Software Portability

KEYWORDS
Portable; Searchable; Email formats; Archives;
Indexing; Parsing; User interface; Query System

1.  INTRODUCTION

Email continues to be an important and very popular
form of personal or business communication, as well as
a way to manage tasks and archive personal
information. In the working world, there is often a need
to search and browse through very large collections of
emails, to track down individuals or to verify decisions,
etc. For convenience, many users will either delete or
archive email after it has been handled. If they choose
to archive their email, these archives can later become
large and cumbersome to search through, especially
after a long period of time has passed. The increasing

trend creates difficulties in attending to email and
results in behaviours that make email feel
overwhelming. The groundbreaking Whittaker and
Sidner 1996 paper coined the term “email overload” to
describe how disorganized emails were [15]. It is
attributed to many factors, including poor personal
information management and large amounts of high
priority email [15].

With the problem of “email overload”, there is also the
issue of archives becoming obsolete through software
aging [8]. In order to combat obsolescence and improve
longevity, various preservation strategies need to be
considered.

A possible solution to address the email overload and
obsolescence issues, is to use a portable offline
searchable email archive that handles mbox and maildir
email formats. The searchability feature would allow
for specific emails to be retrieved from the large archive
(managing email overload), while the portable and
offline features would make the archive less likely to
become obsolete in the short-term. This solution is the
one proposed in this paper.

Taking the above into consideration, we created a Web
application to facilitate portability and offline
searchability, that allows for multiple email formats as
inputs.

The project is divided into two logical sections which,
when used in conjunction solves the overall project. The
two separate sections are as follows:

1. Pre-Processing:

This involves parsing and indexing of the
inputted archives of various email formats.
Parsing will extract and structure relevant
information from the inputted archive, while

indexing involves creating indices from the
parser output.

2. Email Processing:

This involves the user interface and a query
system that allows for fast and efficient
retrieval of emails. The user interface should
display emails clearly to the user and allow for
ease-of-use. The query system should be able
to handle various queries and facilitate
discovery of relevant emails.

Shivaan Motilal worked on the pre-processing
components and I worked on the email processing
components, namely the user interface and query
system. The research questions on the email processing
components were as follows:

● Is it possible to create a user interface that
represents emails in a easy to understand way,
and is usable?

● Can a query system be created that allows for
fast and accurate retrieval of email?

 1.1. Project Significance

We hope this project will help individuals better
manage their emails from large archives and provide
them with fast and accurate search and browse
functions, making it more likely for the information to
be retrievable in later years.

 1.3. Project Structure

The rest of this paper presents background work and
how the findmail system was designed. Experimental
design and various experimental results are then
discussed to illustrate how findmail is effective and
efficient. Finally, ethical considerations, conclusions
and future work are presented.

2.  BACKGROUND

2.1. Digital Collections:

For developed countries, many preservation techniques
can be implemented, however this is not the case for
developing countries (such as in Africa) [12]. In
developing countries, most preservation techniques

cannot be implemented due to insufficient resources and
poor/expensive cost of Internet bandwidth.

A particular way of preserving digital
collections(including email archives) that works for
developing countries is through using the principle of
simplicity [8]. An illustration of this could be the use of
XML plain text documents to store information and
metadata, making it more likely for the information to
be retrievable in later years. Focusing on simplicity also
provides easier interconnection, extension and
modification of the features of a specific system,
allowing for the system to function on multiple
platforms(portable) [8]. The concept of portability is
important for email, as email users use multiple
platforms to access their email, and the email itself can
be stored in different formats.

 Suleman et al. [13] developed CALJAX, a generic
hybrid (online-offline) repository management and
access system based on a strong AJAX foundation. It
allows integration of content from a local source with
content from a remote source, with the only requirement
being a Web browser. XML plain text documents were
used to store information, making it more likely for the
information to be portable, preservable and accessible
through a Web browser.

Expanding on the issue of poor Internet bandwidth, is
the idea of having hybrid online-offline digital
collections to counteract this issue. Online and offline
collections present both advantages and disadvantages,
thus a hybrid digital collection(online-offline
repository) could interleave advantages from both, and
potentially aid in preservation [13]. A hybrid system
was however not in the scope of this project.

2.2. Email Archives:

Some existing software projects around email archives
include Windows Mbox Viewer(MV) [11], Mairix [10]
and Mailpile [6]. WMV [11] displays mbox files on the
user’s screen via a simple user interface. It runs offline
but is a program specifically for Windows. It also does
not provide search functionality over the archive. The
other downsides are the fact that it does not cater for
other email formats and is not portable across operating
systems.

Mairix and Mailpile include indexing and search
functionality, but are not suitable either in terms of
preservation, portability or offline use. Mairix [10] is an
email indexing and searching tool that works with
maildir, MH or mbox formats. It works offline but is

mainly for Linux systems. Since it involves installation
and is not portable across non-Linux operating systems,
it is unusable in this project.

Mailpile [6] is similar to Mairix; it also indexes mbox
and maildir formats, however Mailpile is an email client
and personal Web mail server. It also has a much better
user interface(in comparison to WMV) that is based on
Gmail. It works on multiple browsers but does not have
specific offline usability. It was made using Python, JS
and HTML5, and is the closest work to the one we
propose in this paper.

3. DESIGN OF EMAIL PROCESSING
COMPONENTS

The email processing is split into two components
namely, the user interface and a query system.

3.1. User interface(UI)

The access Web interface is a standard email Web
interface offering the user search and browse functions.
It was developed using a user-driven approach in order
to understand users’ needs and preferences. It consists
of mainly static HTML, CSS and Javascript to display
the relevant result when a user invokes one of the
services. The indices are accessible to the web browser,
and can be parsed using Javascript. This pre-indexing
process is slow compared to the actual search, but is
necessary to obtain fast search results. For browsing,
applicable pre-generated indices are parsed using
Javascript and displayed to the user. For search,
returned indices are also parsed using Javascript and
displayed to the user.

3.1. Query

 The query system, using extended boolean
implementation retrieves relevant emails from the
email archive, by using the indices generated by the
search indexer. An index file either matches the query
or it does not. This provides greater control and
transparency over what is retrieved. Within an index
file, the listing of email document together with the
query term frequency occurs(the number of times a
term occurs in the email document). The search
algorithm retrieves a set of matching documents ranked
by the number of times a term occurs in the email
document. The returned results(indices), are then

parsed using Javascript and displayed to the user.

Fig. 1. Overview of the FINDMAIL system

Figure 1 shows the high-level architecture of the
system. The popular email formats: maildir and mbox,
are inputted to the parser to extract relevant
information. The parser then sends its output to the two
indexers. The browser indexer will then create indices
to facilitate browsing of the email, while the search
indexer will create indices for the search functionality.
Both of these indexers will interact will the user
interface to provide the services of browsing and
searching to the user.

4.  EXPERIMENTAL DESIGN

In order to test the usability, performance, portability
and relevance of the search results, it was necessary to
develop a set of experiments below divided into logical
sections.

 4.1. System Usability Testing:

 The usability test was conducted on a near final version
of the software. Second year computer science students
were recruited through a convenience sampling
method(As the experiments required basic computer
literacy skills). The study was advertised via email . The
test was conducted with a total of 20 students to assess
attributes of the system that make it understandable,
learnable, easy-to-use and attractive. The task scenarios
were designed to assess compliance with recognized
usability principles [3]. The exact tasks of the
evaluation can be found in Appendix A. The data was
sourced from our own personal Gmail inboxes. The
data was of a high quality and it provided a
representative sample of the inputs that are likely to be

used in the future. The test lasted approximately 20
minutes. Ethical clearance was obtained from the
Science Faculty Research Ethics Committee and the
Department of Student Affairs. Before taking part in the
usability test, participants were asked to sign a consent
form informing them of the anonymity of their results.
On completion of the task scenarios, users were asked
to fill in a system usability score questionnaire to
determine the usability of the system . On completion of
the usability study, users were compensated for their
time with a standard fee as specified by the Department.
Tests were conducted in an uncontrolled environment of
the Computer Science Senior laboratory.

Participants accessed a Web page (standard email page)
that presents a browse view of the collection, using a
laboratory computer through Chrome browser. Rather
than observe users throughout the test process, users
were allowed to conduct tasks and answer questions
independently within the 20 minutes of the usability test
session. The reason for this is that users who are
observed will alter their behaviour and may become
nervous, resulting in mistakes and errors affecting
results. However, if users experienced particular
difficulties in completing a task or found the
instructions to be ambiguous, the facilitator could be
asked for help or clarification. Responses were
constrained to a Likert scale that ranges from ‘strongly
disagree’ to ‘strongly agree’.

 4.2. Performance Testing:

Experiments were conducted to measure the time it
takes to download and display the entire content of a
Web page for both the search and browse functions over
collections of various sizes. The data collection used
were simple text files filled with test data. This allowed
tight control over the number of files, as the exact
number of files could be generated for each test. The
test was conducted on collections containing various
number of files (2000, 4000, 6000, 8000, 10000,
12000) and all the files contained the same email items,
as the load time is affected by the number of HTTP
connections needed to download items, item size and
types. The browsing test was conducted by loading 3
pages and the load times were recorded and averaged.
The searching test was conducted by searching for
sampled query term(s) present in the collection and also
averaging the time to generate the results view(check
Table 1). The load times were measured using the

perfomance.now() utility coded within the system. All
performance testing was done on a Mac Book Pro 5.2.

 4.3. Portability Testing:

Cross browsing tests were conducted to study whether
the look and feel as well as functional features of the
developed system worked as intended across popular
browsers (Microsoft Edge, Google Chrome, Mozilla
Firefox and Apple's Safari.). This involved studying the
following metrics:

● User Interface: Checking to make sure the UI
matches the original plans.

● Behaviour: Checking to make sure functional
features throughout are the same.

● Code validation: Checking to make sure
Javascript and CSS validates across the
different browsers.

4.4. Relevance of the search results:

To measures the relevance of the search results, the test
was conducted using our personal collections
containing 10 files. For certain sampled query term(s)
present within the collection, precision and recall were
measured.

5.  EXPERIMENTAL RESULTS

 5.1. System Usability Testing:

The raw data and mode data from the usability test is
provided in Appendix B. Users wanted clearly defined
visuals and graphics. This was apparent when they
struggled to identify chained mails, wanted a button
near the search area and failed to identify emails with
attachments. Thus, more information should be added
for ease of understanding. There is no status shown
while the searching is going on and suddenly the results
appear. Users were uncertain about the search they
made . This violates heuristic that user should always be
notified about the things happening in the system [3].
When looking at design, all the users were happy with
the basic and minimalistic design. A majority of users
(>52%) believed the system was not lacking in
intuitivity. The system had maximum cognitive flow
(little friction and confusion when the user was using
the system).

The overall feedback was positive, with all criticism
being constructive and leading to consistent
improvements and updates to the design of the user
interface.

 5.2 Performance Testing:
The results of the time taken to generate a browse view
are presented in Figure 2. This time is roughly linear
with increases in collection size. Similar results were
obtained for the search function, as shown in Figure 3.

There are a few caveats that we were aware of for this
kind of performance measurement as listed below:

1. The available system memory and CPU.
2. The browser used affected the Javascript

execution and rendering speed.

Figure 2. Time taken to browse a collection.

Figure 3. Time taken to search a collection.

 5.3 Relevance of the search results:

Table 1 shows that the system returns approximately all
the relevant result sets.

Table 1: Precision and recall for sampled query terms
present in collection.

Query/Ter
m

Precision Recall

gary 1 1

projects 1 1

technical 1 1

Research 1 2/3

participant 1 1

5.4 Portability Testing:

The figures below show screenshots of the User
interface across different browsers. The user interfaces
across the different browsers, worked as intended with
respect to the look and feel, code validation and
functional behaviour. For this reason, the developed
system can run on any of the popular browsers without
any change in behaviour and look and feel.

Figure 4. Screenshot of the UI on Google Chrome.

Figure 5. Screenshot of the UI on Firefox.

Figure 6. Screenshot of the UI on Microsoft Edge

 Figure 7. Screenshot of the UI on Apple's Safari.

6.  ETHICAL, PROFESSIONAL AND
LEGAL ISSUES

Ethical issues were identified in the testing, software
implementation and data handling stages of the project.
Each will be discussed in further detail below.

6.1. Testing:

We applied to the Faculty of Science Research Ethics
Committee for ethical clearance, in order to test the
usability of the system with students. All user testing
was conducted through simple surveys and usability
testing, which did not raise any ethical issues.

6.2. Software:

This project is declared open source. This is to
encourage further development and improvement to our
software.

 6.3. Data:

We sourced data from our own personal Gmail inboxes
(Shivaan Motilal has a 680 MB inbox unzipped,
Breyden Monyemoratho has a 670 MB inbox unzipped)
and compiled from the Enron email dataset containing
approximately 1.5 million emails (423MB, tarred and
zipped) [2], which is freely available for reuse.

7. CONCLUSIONS AND FUTURE
WORK

Experiments have confirmed that the developed proof
of concept is intuitive, portable and effective for

browsing and searching over email archives. Findmail
has demonstrated that it is possible to leverage a simpler
architecture and Web technology to enable fast and
accurate browsing and searching over email archives in
developing countries with limited Internet bandwidth.

This simple approach can be extended further in the
following ways :

1. Leveraging the feature of the AJAX
framework to enable integration of content
from a local source with content from a remote
source, thus allowing the user full access to the
most current content.

2. Integrating the current solution with tools and
services that facilitate preservation, such as
logging and integrity checking.

3. For greater efficiency, splitting browsing and
search indices into shards. Thus the speed of
both operations will be constant irrespective of
the size of the collection.

4. Some (advertising) email messages contain
unsightly links that are bundled together with
the message body. There is no easy way to
ascertain if these links will be useful to the
user or not, however the display of these links
can be improved on.

5. The display of threaded email to the user can
be improved on. Threaded messages are
currently separated into parts but not displayed
as such to the user.

6. Using Dublin Core as the metadata scheme to
ensure conformance to international standards
and a universal understanding of the metadata.

7. ACKNOWLEDGEMENTS

I would like to thank my project partner Motilal
Shivaan and project supervisor, Associate Professor
Hussein Suleman for his commitment and help
throughout the course of this project. Finally, my
sincere thanks and appreciation are extended to
University of Cape Town’s Computer Science
department for funding our participant remuneration
and supplying experimental space.

8. REFERENCES

[1] CALO Project. Enron Email Dataset, 2015.DOI:
https://www.cs.cmu.edu/~enron/

[2] Centre for Curating the Archive. The Digital Bleek
and Lloyd, 2018. DOI:
http://lloydbleekcollection.cs.uct.ac.za/

[3] Jakob Nielsen and Rolf Molich. 1990. Heuristic
evaluation of user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems (CHI '90), Jane Carrasco
Chew and John Whiteside (Eds.). ACM, New
York, NY, USA, 249-256.
DOI=http://dx.doi.org/10.1145/97243.97281

[4] JSDOM. JavaScript browser simulator, 2018. DOI:
https://github.com/sttk/jsdom-browser/

[5] Facebook. Jest. Javascript testing tool, 2018. DOI:
https://facebook.github.io/jest/

[6] Mailpile. An email client, 2018. DOI:
https://www.mailpile.is/

[7] David L. Parnas. Software aging. In Software
Engineering, 1994. Proceedings. ICSE-16., 16th
International Conference on (pp. 279-287). IEEE.
May, 1994.

[8] Lighton Phiri and Hussein Suleman. In search of
simplicity: Redesigning the digital bleek and lloyd.
DESIDOC Journal of Library & Information
Technology, (pp 32-34), 2012.

[9] Python 3 Standard Library. Mailbox module, 2018.
DOI:
https://docs.python.org/3/library/mailbox.html/

[10] SourceForge. Mairix. Programme for indexing and
searching mail, 2009. DOI:
https://github.com/rc0/mairix/

[11] SourceForge. Windows Mbox Viewer, 2015. DOI:
https://sourceforge.net/projects/mbox-viewer/

[12] Hussein Suleman. An African Perspective on
Digital Preservation. In Multimedia Information
Extraction And Digital Heritage Preservation (pp.
295-306), 2008.

[13] Hussein Suleman, Marc Bowes, Matthew Hirst,
and Suraj Subrun. Hybrid online-offline digital
collections. In Proceedings of the 2010 Annual
Research Conference of the South African Institute
of Computer Scientists and Information
Technologists on - SAICSIT ’10, ACM Press,
421-425, 2010.

[14] Visual Studio Code. A compact code editor and
IDE, 2018. DOI: https://code.visualstudio.com/

[15] Steve Whittaker, and Candace L. Sidner. Email
overload: exploring personal information
management of email. In Proceedings of the
SIGCHI conference on Human factors in

computing systems (pp. 276-283). ACM. April,
1996.

APPENDIX A: User Interface task scenarios:

1. Check all buttons and directories are properly labeled and functional.
2. Verify that on clicking the email, user is navigated to email content.
3. Check availability of all the mandatory fields like: sender, subject, body and attachments etc.
4. Verify that any attachments can be opened and are downloadable.
5. Check chained mail display.
6. Enter a single word query to search in the search-box.eg. your name: “Tom”
7. Enter a sentence or phrase query to search. eg. “Science faculty”

APPENDIX B: The raw data and mode data from the usability test:

