
Project Proposal: A Portable Large Volume Email
Retrieval System

 Shivaan Motilal

 University of Cape Town
 Computer Science

 mtlshi005@myuct.ac.za
 Breyden Monyemoratho
 University of Cape Town

 Computer Science
 mnybre002@myuct.ac.za

CCS CONCEPTS
• Information systems → Information retrieval →
Specialized information retrieval • Software and its
engineering → Software libraries and repositories •
Software and its engineering ➝ Software Portability

KEYWORDS
Portable; Searchable; Email formats; Archives;
Indexing; Parsing; User interface; Query System

1. PROJECT DESCRIPTION

In the working world, there is often a need to search and
browse through very large collections of emails, to track
down individuals or to verify decisions, etc. For
convenience, many users will either delete or archive
email after it has been handled. If they choose to
archive their email, these archives can later become
large and cumbersome to search through, especially
after a long period of time has passed. This can be
attributed to many factors, including poor personal
information management and large amounts of high
priority email. Whittaker et al. [15] termed this “email
overload”.

With the problem of “email overload”, there is also the
issue of archives becoming obsolete through software
aging [8]. In order to combat obsolescence and improve
longevity, various preservation strategies need to be
considered.

A possible solution to address the email overload and
obsolescence issues, is to use a portable offline
searchable email archive which handles multiple email
formats (such as mbox and maildir). The searchability
feature would allow for specific emails to be retrieved
from the large archive (managing email overload),
whilst the portable and offline features would make the
archive less likely to become obsolete in the short-term.
This solution is the one proposed in this paper.

Taking the above into consideration, we will be creating
a Web application to facilitate portability and offline
searchability, that allows for multiple email formats as
inputs.

The project is divided into two logical sections which
when used in conjunction, will solve the overall project.
The two sections are as follows:

1. Pre-Processing:

This involves parsing and indexing of the
inputted archives of various email formats.
Parsing will extract and structure relevant
information from the inputted archive, whilst
indexing will involve creating indices from the
parser output.

2. Email Processing:

This will be composed of creating the user
interface and a query system that allows for
fast and efficient retrieval of emails. The user
interface should display emails clearly to the
user and allow for ease-of-use. The query
system should be able to handle various
queries.

2. PROBLEM STATEMENT

Our proposed solution will consist of the following
features:

1. Should allow for input of large email archives
in multiple email formats: large maildir and
mbox archives(as a basic requirement) should
be processable by the Web application.

2. Be Portable: Due to a Web application being
used, portability is already somewhat achieved
as the email system should be able to run on
multiple platforms that support a Web browser.

3. Provide offline usage of the archive/collection:
features such as search and browse should be
available without Internet connectivity.

 The research questions are:

 2.1. Pre-processing: Indexing and Parsing

● Can we create an indexing system that works for
the popular email formats, as well as other relevant
ones?

● Can both indexing and parsing work on multiple
platforms (portable)?

 2.2. User Interface and Querying System

● Is it possible to create a user interface that
represents emails in a easy to understand way, and
is usable?

● Can a query system be created that allows for fast
and accurate retrieval of email?

3. PROCEDURES AND METHODS

Our approach will be split into the two main sections of
pre-processing and email processing.

3.1. Pre-processing

 3.1.1. Parser

Before indexing can occur, email archives
(sources/inputs) of different formats, need to be
streamed into the application. The parser will extract
relevant data (constituents) from the email archives and
pass this data on to the indexer. We plan to create our
parser in the Python programming language, using the
existing mailbox module [9].

 3.1.2. Indexer

The indexer will then create metadata, search terms and
apply tags from the output of the parser, creating
multiple indices from the information. There will be
two indexers, one for the search functionality and the
other for browsing. The indexers will also be created
using Python.

3.1.3. Evaluation:

The following evaluation criteria will be used to test the
parsing and indexing components:

● Portability - check whether the system
functions on multiple browsers (Firefox,
Google Chrome, Safari, Microsoft Edge etc.)

● Efficiency - test the time taken (speed) to parse
or index.

● Effectiveness - for the parser, the number of
correct constituents in the parser output will be
measured. Parsed constituents comprises of
data from email attachments, data fields from
the email body and email headers. For the
indexer, the time spent searching and browsing
compared to looking through the larger
archive, will be measured.

3.2. Email Processing

3.2.1 User Interface(UI)

The user interface will consist of mainly static HTML
and JavaScript to display the emails from the archives
clearly to the user. For the browsing functionality, each
email will be its own static HTML page, and linked to a
main page that shows the repository in a structured
layout. To develop the UI, we will use a user centered
approach and consult users in order to understand users’
needs and preferences.

3.2.2 Query

 The query system will retrieve relevant email from the
email archive, by using the indices generated by the
search indexer.

Fig. 1. Overview of the FINDMAIL system

In Fig.1, we show the popular email formats: maildir
and mbox, being inputted to the parser. The parser then
sends its output to the two indexers. The browser
indexer will create indices to facilitate browsing of the
email, whilst the search indexer will create indices for
the search functionality. Both of these indexers will
interact will the user interface to provide the services of
browsing and searching to the user.

2

3.2.3. Evaluation:

The following evaluation criteria will be used to test the
UI and query components:

● Usability - is concerned with attributes of the
system that make it understandable, learnable,
easy-to-use and attractive. Jakob Nielsen’s
heuristics [3] will be used to assess the
usability.

● Efficiency - test the time taken (speed) to
browse or search and generate the results view
within a reasonable time (for the size of the
archive).

● Effectiveness - measures the relevance of the
search results. We will measure this by
obtaining the percentage of the relevant items
retrieved from the total number of emails.

3.3. Resources

We plan to use Python, HTML and JavaScript to create
the components of the FINDMAIL system. The
decision to use the Python programming language, is
mainly motivated by the need for digital preservation
through simplicity. Apart from being easier to
understand, Python is very portable and can run on
many operating systems. Python also has packages and
modules which can be used for indexing and parsing
email archives.

4. ETHICAL, PROFESSIONAL AND
LEGAL ISSUES

Ethical issues have been identified in the testing,
software implementation and data handling stages of the
project. Each will be discussed in further detail below.

4.1. Testing:

We will apply to the Faculty of Science Research Ethics
Committee for ethical clearance, in order to test the
usability of the system on students and staff.

4.2. Software:

This project will be declared open source. This is to
encourage further development and improvement to our
software.

 4.3. Data:

The data to be used on the system will be sourced from
our own personal Gmail inboxes (Shivaan Motilal has a
680 MB inbox unzipped, Breyden Monyemoratho has a
670 MB inbox unzipped) and compiled from the Enron

email dataset containing approximately 1.5 million
emails (423MB, tarred and gzipped) [2]. We have an
ethical responsibility to take into consideration the
privacy of the parties involved, particularly in the case
of the Enron email dataset.

5. RELATED WORK

5.1. Digital Collections:

For developed countries many preservation techniques
can be implemented, however this is not the case for
developing countries (such as in Africa) [12]. In
developing countries, most preservation techniques
cannot be implemented due to insufficient resources and
poor/expensive cost of Internet bandwidth.

A particular way of preserving digital
collections(including email archives) that works for
developing countries is through using the principle of
simplicity [8]. An illustration of this could be the use of
XML plain text documents to store information and
metadata, making it more likely for the information to
be retrievable in later years. Focusing on simplicity also
provides easier interconnection, extension and
modification of the features of a specific system,
allowing for the system to function on multiple
platforms(portable). The concept of portability is
important for email, as email users use multiple
platforms to access their email, and the email itself can
be stored in different formats.

 Suleman et al. [13] developed CALJAX, a generic
hybrid (online-offline) repository management and
access system based on a strong AJAX foundation. It
allows integration of content from a local source with
content from a remote source, with the only requirement
being a Web browser. XML plain text documents were
used to store information, making it more likely for the
information to be portable, preservable and accessible
through a Web browser.

Expanding on the issue of poor Internet bandwidth, is
the idea of having hybrid online-offline digital
collections to counteract this issue. Online and offline
collections present both advantages and disadvantages,
thus a hybrid digital collection(online-offline
repository) could interleave advantages from both, and
potentially aid in preservation [13]. A hybrid system
will however not be in the scope of this project, as there
are many complications that come with creating such a
system.

3

5.2. Email Archives:

Some existing software projects around email archives
include Windows Mbox Viewer(WMV), Mairix [10]
and Mailpile [6]. WMV [11] displays mbox files on the
user’s screen via a simple user interface. It runs offline
but is a program specifically for Windows. It also does
not provide search functionality over the archive. The
other downsides are the fact that it does not cater for
other email formats and is not portable across operating
systems.

Mairix and Mailpile include indexing and search
functionality, but are not suitable either in terms of
preservation, portability or offline use. Mairix [10] is an
email indexing and searching tool that works with
maildir, MH or mbox formats. It works offline but is
mainly for Linux systems. Since it involves installation
and is not portable across non-Linux operating systems,
it is unusable in this project.

Mailpile [6] is similar to Mairix; it also indexes mbox
and maildir formats, however Mailpile is an email client
and personal Web mail server. It also has a much better
user interface(in comparison to WMV) that is based on
Gmail. It works on multiple browsers but does not have
specific offline usability. It was made using Python, JS
and HTML5, and is the closest work to the one we
propose in this paper.

6. ANTICIPATED OUTCOMES

The project aims to develop a robust, portable and large
volume email retrieval system for an individual, that
can be used both online and offline.

6.1. Key Features

● Portability (function on multiple platforms).
● Provide offline access.
● Fast and accurate search and browse functions

over email (handle various queries).
● Intuitive user interface.
● Parsing and indexing of popular email formats

(mbox and maildir).

6.2. Major Design Challenges

● Making the indexer and parser work with
multiple email formats.

● Module integration of the indexer and parser,
with the user interface and query system.

● Module integration (UI, Parser, Indexer, Query
System).

● Designing the system such that it works for
multiple Web browsers.

6.3. Expected Impact

We hope this project will help individuals better
manage their emails from large archives and provide
them with fast and accurate search and browse
functions, making it more likely for the information to
be retrievable in later years. In addition, by releasing
the resulting tool from this project as open source, the
community will be able to freely use our work and
expand and improve on our tools.

6.4. Key Success Factors

● Our system is able to parse and index multiple
email formats.

● Provides offline access.
● Provides fast and accurate search and browse

functions over email.
● Considered portable (function on multiple

platforms).

7. PROJECT PLAN

7.1. Risk Matrix

The risk matrix in Appendix A outlines the probabilities
and impact of each risk identified. It also outlines the
consequences, mitigation strategies, monitoring
strategies and management strategies that will be
applied to each risk.

7.2. Timeline

A timeline of events and deliverables are shown in the
Gantt Chart in Appendix B.

7.3. Resources Required

7.3.1. Software required

We anticipate we will need to make use of the
following software resources:

● Visual Studio Code- This is an IDE that supports
Python, HTML and JavaScript code editing
(along with other programming languages). It is
a well-established software and has multiple
features for coding, debugging and compiling
efficiently [14].

● The python mailbox module: This module allows
for manipulation of emails in various formats
including maildir, mbox, MH, Babyl and MMDF
[9].

● Jest- This will be used for JavaScript testing and
is a popular Javascript testing tool created by
Facebook [6].

4

● JSDOM- Allows for testing of JavaScript in a
simulated browser environment [6]. This will be
used before testing is done on real browsers.

7.4. Project milestones

Table 1: Table showing the project milestones

Date Description

25-05-18 Project Proposal
Presentation

11-06-18 Revised Proposal
Submission

15-06-18 Ethical Clearance
Request Submission

15-06-18 Project Web Presence

23-07-18 Initial Software
Feasibility
Demonstration

25-08-18 First Draft of Final Paper

27-08-18 Final Complete Draft of
Final Paper

06-09-18 Project Paper Final
Submission

07-09-18 Project Code Final
Submission

17-09-18 Final Project
Demonstration

17-09-18 Project Poster

26-09-18 Project Web Page

03-10-18 Reflection Paper

7.5. Software milestones

Key software milestones comprises of the back end,
front end and services modules.

● Back end module - Consists of the indexing
and parsing components of the application.

● Front end (interfaces to the services) - User
interfaces.

● Services (Service functionality) module -
search and browse services.

7.6. Work Allocation

Shivaan Motilal will be working on the pre-processing
components, namely the parser and indexer. Breyden
Monyemoratho will be working on the user interface
and query system for email processing. The format of
the indices will be determined and worked on together.

8. REFERENCES

[1] CALO Project. Enron Email Dataset, 2015.DOI:
https://www.cs.cmu.edu/~enron/

[2] Centre for Curating the Archive. The Digital Bleek
and Lloyd, 2018. DOI:
http://lloydbleekcollection.cs.uct.ac.za/

[3] Jakob Nielsen and Rolf Molich. 1990. Heuristic
evaluation of user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems (CHI '90), Jane Carrasco
Chew and John Whiteside (Eds.). ACM, New
York, NY, USA, 249-256.
DOI=http://dx.doi.org/10.1145/97243.97281

[4] JSDOM. Javascript browser simulator, 2018. DOI:
https://github.com/sttk/jsdom-browser/

[5] Facebook. Jest. Javascript testing tool, 2018. DOI:
https://facebook.github.io/jest/

[6] Mailpile. An email client, 2018. DOI:
https://www.mailpile.is/

[7] David L. Parnas. Software aging. In Software
Engineering, 1994. Proceedings. ICSE-16., 16th
International Conference on (pp. 279-287). IEEE.
May, 1994.

[8] Lighton Phiri and Hussein Suleman. In search of
simplicity: Redesigning the digital bleek and lloyd.
DESIDOC Journal of Library & Information
Technology, (pp 32-34), 2012.

[9] Python 3 Standard Library. Mailbox module, 2018.
DOI:
https://docs.python.org/3/library/mailbox.html/

[10] SourceForge. Mairix. Programme for indexing and
searching mail, 2009. DOI:
https://github.com/rc0/mairix/

[11] SourceForge. Windows Mbox Viewer, 2015. DOI:
https://sourceforge.net/projects/mbox-viewer/

[12] Hussein Suleman. An African Perspective on
Digital Preservation. In Multimedia Information
Extraction And Digital Heritage Preservation (pp.
295-306), 2008.

[13] Hussein Suleman, Marc Bowes, Matthew Hirst,
and Suraj Subrun. Hybrid online-offline digital
collections. In Proceedings of the 2010 Annual
Research Conference of the South African Institute
of Computer Scientists and Information
Technologists on - SAICSIT ’10, ACM Press,
421-425, 2010.

5

[14] Visual Studio Code. A compact code editor and
IDE, 2018. DOI: https://code.visualstudio.com/

[15] Steve Whittaker, and Candace L. Sidner. Email
overload: exploring personal information
management of email. In Proceedings of the
SIGCHI conference on Human factors in
computing systems (pp. 276-283). ACM. April,
1996.

6

Appendix A: Project Risk Matrix

Risk Probabi
lity

Impact Consequence Mitigation Monitoring Management

Scope creep. High High Change in
requirements
and more
pressing time
constraints.

Allocate time
buffer to cater for
unexpected
changes/complete
project within the
timeframe.

Keep up with the
changing needs of
the stakeholders.

Adhere to an agile
approach to the
project.

Members do not
complete their
section on time.

High Medium Work not being
delivered in
time and
increase in
pressure to
complete
project.

Have sections
split such that
each can work as
standalone parts
or use dummy
data as input to
the particular
module that has
the dependency,
to test
functionality.

Keep tabs on
teammates, plan
events.

Have discussion
amongst team
members and
facilitator, to
determine which
sections can be
prioritized over
others.

Inability to meet
the project
sub-deadlines.

Medium High Loss of marks. Do additional
planning and have
more
finer-grain/specific
deadlines.

Work to make up
delay or remove
excess functionality
tasks/prioritize.

Have discussion
amongst team
members and
facilitator, to
prioritize which
sections to work
on.

A team member
drops out of the
course.

Medium High Work not being
delivered in
time and
increase in
pressure to
complete
project.

Maintain a
consistent level of
contact with team
members, have
sections split such
that each can be
standalone
sub-projects.

Keep tabs on
teammates, plan
events and
encourage clear
and honest
communication.

Split tasks
amongst other
team members,
communicate
problem to su
pervisor.

Appendix B: Gantt Chart

