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ABSTRACT 
Spellchecking is an important tool for the writing of text and with            
the increase in text based communication spellcheckers have        
become increasingly important. With the few advances that have         
been made in the field of spellchecking for Nguni languages, there           
are currently two spellcheckers available for the Nguni language         
isiXhosa, which both have limitations in terms of their         
functionality, scope and accuracy. In this report a rule based          
approach for isiXhosa spelling error detection was investigated.        
As a result we have implemented a system and wrote some of the             
grammar rules for the nouns, verbs, adjectives, pronouns and         
possessives which had effect on the spelling of words. 

The system was implemented using a tool called SFST and Java,           
with Github used as a version control system. The system was           
tested in two iterations where we first tested the rules individually           
and then combined them as one system which was also tested on            
its own. From these tests the accuracy rate for POS tagging is            
88.26% for the noun rules, 94.58% for verb rules, 97.91% for           
adjective rules, 98.12% for pronoun rules and 100% for the          
possessives rules. The spelling error detection of the overall         
system received an accuracy of 80.8%.  

Keywords 
Morphological Analyser, Error Detector, IsiXhosa, SpellChecker,      
Natural Language Processing, POS Tagging. 

1. INTRODUCTION 
Spellchecking is the act of detecting whether a word form is           
correct or not [Rios 2011] and it is used in many text based             
computer application. With the increase in the use of text based           
communication (social media messaging, email, e.t.c) spelling       
error detection has become increasingly important since       
incorrectly spelled words can cause confusion and       
misunderstanding in the communication.  

Even though there is a number of projects that have been done in             
the field of spellchecking, only a few exist for Nguni languages           
and from these, only Spellchecker.net and an OpenOffice plugin         
are available for isiXhosa. Spellchecker.net is a web-based        
spellchecker that offers error detection and correction of        
misspelled words for various languages including isiXhosa.       
Spellchecker.net has no documentation for the spellchecker. The        
OpenOffice plugin is outdated and thus could not be used          
anymore and also no documentation was found about it. 

On top of the isiZulu spellchecker developed by Ndaba et.al          
[2016], another spellchecker for one of the Nguni languages might          
be advantageous to the residents of this country since people are           
generally more comfortable and prefer to interact with technology         
in their native language [Pretorius and Bosch 2003]. IsiXhosa is          
chosen amongst all the other languages since it is closely related           

to all the other Nguni languages and we hope that any work done             
on this language can easily be bootstrapped to any of the Nguni            
languages [Mzamo et.al 2015]. 

Since the 11 official South African languages belong to the lesser           
studied and computer resourced languages in the world the         
government of South Africa has decided to have an open source           
repository for data/information about all these languages       
[Pretorius and Bosch 2009]. The repository is called RMA         
(https://rma.nwu.ac.za/) and currently it has 32 files for isiXhosa.         
Considering the fact that isiXhosa is an agglutinative language,         
using existing files to detect incorrectly spelled words may not          
produce a good spelling error detection accuracy rate since these          
files may not have most words of the language. 

The most common and widely used spellchecking approach is the          
statistical based approach, but as stated above due to the          
agglutinative nature and the scarcity of computer resources for         
isiXhosa this approach might not perform at its best. Thus this           
project mainly focuses on investigating the feasibility of an error          
detector for isiXhosa using the rule based approach. Based on this           
investigation we then aim at comparing the accuracy of the rule           
based approach (presented in this paper) with the statistical based          
approach (presented on Nthabiseng Moshiane’s paper). 

Furthermore, the project’s objective was the development of a         
spelling error detector for the isiXhosa language using the rule          
based approach. This is a theory based approach which focuses on           
studying and analysing the morphological structure of isiXhosa.        
We use these morphological structures and then write them as          
regular expression which will then be encoded as finite state          
transducers. 

These kind of transducers give us a system that we call a            
morphological analyser and from this morphological analyser we        
will be able to feed in words which will then be checked whether             
they satisfy the rules or not. If they do then they will be regarded              
as correctly spelled, otherwise not. 

This report first introduces a number of related papers and          
projects. Then it focuses on the design and implementation of the           
system. Thereafter it provides an in-depth analysis of how the          
system will be evaluated and then present results on the          
performance of the system in this evaluation. Finally, the report          
presents the conclusions that were reached as well as areas for           
future works. 

2. BACKGROUND AND RELATED 
WORK 
2.1 Background 
An agglutinating language is one whose words are formed by a           
combination of different morphemes where these morphemes are        
not changed prior their use in any word [Prószéky and Kis 1999].            



 

Theron and Cloete [1997] show that isiXhosa should not be          
treated as a simple non-agglutinative language as the tool created          
based on this assumption will only work for some parts of the            
language. To show this, Theron and Cloete [1997] analysed rules          
pertaining noun-locative pairs. 

Clark and Araki [2011] highlights the problem faced in the          
informal/casual writing of English which most often does not         
conform with the rules of spelling, punctuation and grammar. As a           
solution to this problem, automated tokenization, word matching        
and replacement techniques were used in combination with a         
high-quality, large scale, manually compiled database. In this        
program, firstly, this technique works by taking the user input and           
tokenizing it using regular grammar rules defined in PyParsing         
(another approach for defining grammars other than the lexc/yacc         
for defining regular expressions) and then they check the         
tokenized word against their database of defined words. This         
works well for English but may not work for isiXhosa due to the             
huge grammar difference between isiXhosa and English. 

There are currently two approaches that can be followed for          
developing an isiXhosa spelling error detector. The two        
approaches are the rule-based approach (presented in this paper)         
and the statistical based approach which uses dictionary lookup         
and/or n-gram analysis for spelling error detection (presented in         
Nthabiseng Mashiane’s paper). 

As mentioned in the section above, amongst these two         
approaches, the most popular approach in spellchecking is the use          
of a text corpus to flag incorrectly spelled words. Bosch and           
Eiselen [2005] highlight that since isiXhosa is a highly         
agglutinative language such text would be extremely huge and         
thus would consume a large amount of physical memory, which is           
not ideal for spellcheckers. 

The rule based approach has been followed and has worked well           
in a number of projects that were based on agglutinative          
languages. These projects are discussed in the following        
subsection. 

2.2 Related Work 
Morphological analysis has been used in the spellchecking of         
most/many agglutinative languages, this is evident by projects        
such as the ones stated below. This morphological analyser is          
basically a finite state transducer that is built from the morphology           
of the language. 

In an attempt to create a spellchecker for Quechua which is a            
strongly agglutinative and suffixing language from South       
America, a morphological analyser which used the XFST tool was          
produced [Rios 2011]. 

Katushemererwe [2010] describes the implementation of a       
morphological analyser using the XFST tool in analysing the         
morphology of the Runyakitara language which is an        
agglutinative Bantu language from Uganda. This analyser was        
reported to have an accuracy of 80% accuracy rate on Runyakitara           
nouns. 

Kessikbayeva and Cicekli [2016] describe the implementation of a 
morphological analyser for Kazach which is an agglutinative 
language spoken in countries such as China, Russia, and more. 
This morphological analyser is reported to have an accuracy rate 
of 87%.  

Kumar et.al [2012] developed a morphological analyser for Hindi 
using the SFST tool and the analyser was reported to have an 

accuracy rate of 97%.  The morphological analyser developed was 
used in a Part Of Speech (POS) Tagger based on Stanford POS 
Tagger. 

[Lipps] describes the implementation of a morphological analyser 
for an East African Bantu language called Swahili. The 
morphological analyser was implemented using the XFST tool 
and it was based on some of the noun, verb, nominal and 
adjectival morphology of the language. 

Computational morphological analysers for Nguni languages has 
been reported to be feasible by Pretorius and Bosch [2002] where 
they produced a functional noun prototype of a morphological 
analyser for isiZulu. They further extended their work to other 
POS categories such as verbs and from this work a morphological 
analyser named ZuluMorph for isiZulu was produced. 
Furthermore, [Bosch et.al 2008, Pretorius and Bosch 2009] 
describe the process of bootstrapping the already existing 
morphological analyser for isiZulu to develop one for isiXhosa. 
Both of these papers reported that the process used the XFST tool 
and that using ZuluMorph as an already existing prototype took 
less development time for isiXhosa than it was when ZuluMorph 
was first developed. Bosch et.al [2008] also reported the 
morphological analyser to have correctly analysed 71.10% of 
isiXhosa words. 

Agglutinative languages such as Runyakitara, Quechua,      
Runyakitara, Hindi and Kazach which have been investigated for         
error detection have used and shown that morphological analysis         
gives higher accuracy in spelling error detection of such         
languages. Therefore in the following section we discuss the         
design and implementation of a morphological analyser for        
isiXhosa. 

3. SYSTEM DESIGN AND 
IMPLEMENTATION 
3.1 Tools and Technologies 
We have looked at a number of finite state tools such as the Xerox              
Finite State Tool (XFST), Helsinki Finite-State Tool (HFST),        
OpenFST, Foma and Jflap but since we could not obtain the           
functionality and results that we wanted in some of these tools, we            
then decided to use the Stuttgart Finite-State Transducer Tool         
(SFST) which is freely available under the GNU Public License.          
SFST is a linux based tool which through its robust programming           
language (SFST-PL) supports many different formats of regular        
expressions such as the ones used in grep, sed or Perl [Schmid            
2005]. Below are some of the reasons and motives as to why all             
the other tools were not chosen. 

3.1.1 XFST 
XFST is a commercial software/tool, thus since we want the          
spellchecker to be freely available to everyone we decided not to           
use this tool.  

3.1.2 JFlap 
JFlap is a package of graphical tools that can be used for            
experimenting with topics in the computer science area of formal          
language and automata theory [Rodger et.al 2006]. The tool did          
not allow us to define multiple regular expressions which could be           
used simultaneously. Also the regular expressions defined in the         
tool cannot be used simultaneously with some set of correctly          
spelled words.  



 

3.1.3 HFST 
Helsinki Finite-State Transducer Technology (HFST) is a       
software intended for the implementation of morphological       
analysers and other tools which are based on weighted and          
unweighted finite state transducer technology. Regular expression       
written using this tool can only be edited using this tool, and since             
the tool supports weighted transducers it was a bit complicated          
and confusing working with it since the tool forced us to specify            
weights in some of our rules. 

3.1.4 OpenFST 
OpenFST is a library for weighted finite state transducers. Since          
we did not want to include/use weights in our rules this tool could             
not be used as it only support transducers that are weighted. 

3.1.5 Foma 
Foma which is a compiler, programming language, and C library          
for constructing finite-state automata and transducers [Hulden       
2009]. Foma support most functionalities that are supported by the          
XFST tool and it is the one other tool that we could have worked              
with since it offers all the functionality that we needed but we            
were more comfortable in working with SFST than Foma. 

3.2 Design Process 
In developing this morphological analyser we first had to decide          
on which aspects of the morphology to focus on. As a result we             
have read about the morphology of the language which was found           
in books [Dowling and Wise 1998, Pahl et.al 1997, Satyo 1999,           
McLaren and Welsh 1936, Kosch 2011, Kotze 2003, Du Plessis          
and Visser 1995]. After reading about the morphology and         
consultating from Dr M Keet and Dr M Motinyane-Masoko we          
then decided to firstly focus on nouns and verbs.  

We then followed a similar approach as in [Kessikbayeva and          
Cicekli 2016] where we created two different sets of two-level          
rules for each part-of-speech (POS) category which were later         
combined. We first created the orthographic rules which detect the          
spelling of the morphemes in the language and then we created           
the morphotactic rules which were specifying the allowed        
combination of these morphemes. For example if we want to          
detect the noun ‘abantu’ (belonging to noun class 2 and meaning:           
people), then since the word is formed by two morphemes: aba-           
and -ntu, our orthographic rules would detect whether these         
morphemes are correctly spelled such that we don't have cases          
like -nut instead of -ntu. The transducer rules would be as follows: 

 

Then the morphotactic rules would allow us to make the correct           
combination which is ‘abantu’ instead of ‘ntuaba’, and the         
transducer for this would be: 

 

These two set of rules for each POS category were then combined            
to form a transducer for each category that we decide to look at.             
These transducers for all these categories were then combined to          
form the integrated system which is our morphological analyser.  

As part of our rule design process, all of the rules which will be              
described in subsections 3.4.1 - 3.4.5 have been confirmed by          
some of the students from the African Language section at the           
University of Cape Town. These rules were developed in an          
iterative approach, where in each iteration we wrote the rules for           
each POS category and then tested how each rule affected the           
overall accuracy of the system.  

3.3 Architecture 
The architecture of the system is very simple, there is a backend            
and a frontend. The backend interacts with the SFST program          
using Java. A more detailed overview of the system is shown in            
the system diagram below. 

 

        Figure 1: System Architecture 

The input/output layer in the backend is simply what takes the           
user input and then split it into single words which are then passed             
through the morphological analyser. On the frontend we simply         
run a java program and then read a text file or enter words to be               
spellchecked manually one by one. The user interface was         
developed in Java Swing with the aim of allowing us to test the             
accuracy of our error detector. Even though we have tried to make            
an easy to use tool, user satisfaction was not the primary goal of             
building the interface and thus no user evaluations have been done           
for this interface. 

3.4 Rule Design 
We briefly discuss major parts of our rule design process in the            
following subsections on a very high level definition, all         
files/codes are commented nicely with more explanations. The        
source code is available in the project website, on Github [Neti           
2017] and also in Appendix A below. 

In defining our rules we have used the following SFST syntax as            
defined and stated  by Schmid [2005]: 

1. Variables are defined by using two dollar signs and         
putting the variable name inside them e.g $mapp$ = a:e          
defines the variable name mapp as a mapping of an ‘e’           



 

to ‘a’. When calling these variable names we also use          
the name $mapper$ as it is. 

2. An ’or’ condition is represented by | and |\ defines the           
’or’ condition between two consecutive lines. 

3. The symbol & is used as an ‘and’ condition between          
two statements. 

4. % symbols are used for single line comments. 

As an example, the snapshot below (figure 2) first starts with a            
comment (as the first line starts with a percentage sign) saying           
‘possessive pronoun prefixes’ and then it defines a variable called          
‘pos_pref’ (as this is between two dollar signs) which is the           
mapping of ‘a’ to an empty string or ‘o’ to an empty string. Note              
that the ‘or’ operator used here is the one that is between two             
consecutive lines. 

   

     Figure 2: Snapshot from the possessive rules 
For more information about the SFST syntax please refer to the           
manual in Schmid [2005]. 

Bosch et.al [2008] reported that the greater morphological        
analysis complexity of Nguni languages lies with the nominal and          
verbal morphology. As a result we first looked at the noun and            
verb rules, and thereafter looked at adjectives, pronouns and         
possessives. 

Karttunen [1996] suggest that in order to avoid time and space           
problems transducers for different sections be separate and        
combined at the end instead of having the entire system as a single             
transducer. Thus, we have separated our transducers with regards         
to different morphological groups and each of the following         
subsection represents a separate transducer. 

3.4.1 Nouns 
We have first looked at the noun classes and have separated the            
nouns according to their classes. The 15 noun classes for isiXhosa           
are separated/differentiated with their prefixes so we have used         
these prefixes together with a set of rules that determine the           
orthography for the stems of the noun which were found in [Satyo            
1999, Pahl et.al 1997]. Since the orthography of noun stems is           
quite complex, we only accept noun stems that do not have more            
than one consecutive vowel and has no more than three          
consecutive consonants (see line 7 in Appendix A1). Also no          
consonant is allowed to follow itself in the stem (see line 13 in             
Appendix A1) and then finally the stem has to end with a vowel             
(see line 37 in Appendix A1). These stems not only cater for noun             
stems but also cater for any other stems in the language as a             
whole, so we expect that the rules will detect more words as            
correctly spelled than should be. [Satyo 1999, Pahl et.al 1997,          
Dowling and Wise 1998, McLaren and Welsh 1936, Du Plessis          
and Visser 1995 ] 

We have also looked at compound nouns but figuring out that the            
noun stems can recognise any words these compound nouns were          
also recognised by the rules of the regular nouns. Compound          
nouns are basically formed by combining two words, where one          
of them should be a noun [Satyo 1999, Pahl et.al 1997, Dowling            
and Wise 1998]. So based on that we have catered for cases where             
a noun is combined with another noun, an absolute pronoun, or           
combined with an adjective. In terms of morphotactic rules we          
have catered only for the following cases: 

1. A noun is combined with another noun. In this case our           
rules output a final word defined by :        
pref1+root1+suffix1+root2+suffix2, where pref1 is the     
prefix of the first noun, root1 is the root of the first            
noun, suffix1 is the suffix of the first noun, root2 is the            
root of the second noun and suffix2 is the suffix of the            
second noun. 

2. A noun is combined with an absolute pronoun. The         
output of our rules is pref1+root1+suffix1+root2, where       
pref1 is the noun prefix, root1 is the root of the noun,            
suffix1 is the suffix of the noun and root2 is the root of             
the pronoun. 

3. A noun is combined with an adjective and the output is           
pref1+root1+suffix1+adjective_stem, where pref1 is the     
noun prefix, root1 is the root of the noun, suffix1 is the            
suffix of the noun and adjective_stem is the stem of the           
adjective. 

Where a prefixes could either be a subject concord, a copulative           
concord, an object concord or a combination of 2 or all these            
concords in some cases. Some compound nouns with complex         
grammar were not covered in this work due to time constraints. 

3.4.2 Verbs 
We have managed to find a file with verb roots from the [Rma:             
2012] website. The file had 4354 verb roots with 121 of the roots             
beginning with vowels. So now the main objective was on          
determining the orthographic rules of the prefixes and the allowed          
combination of prefixes and suffixes for these roots. 

The prefixes are categorised into different combinations and they         
can be able to recognise only the verbs from whose roots are            
available in the file mentioned above.  

We have managed to find the orthographic rules and the allowed           
combinations of prefixes and suffixes for verbs in the remote past           
tense, present tense, future tense, past subjunctive mood, izixando         
from the books. [Satyo 1999, Pahl et.al 1997, Dowling and Wise           
1998, McLaren and Welsh 1936, Du Plessis and Visser 1995].          
These rules have been written as regular expressions (see         
Appendix A2 below). 

3.4.3 Adjective 
Adjectives were the next POS category that we have looked at           
after verbs. Adjectives are subgrouped in the isiXhosa language         
and in this work we have looked at all of these subgroups. The             
prefixes for the adjectives are are called “adjective concords” and          
each group has its own set of adjective concords [Satyo 1999,           
Pahl et.al 1997, Dowling and Wise 1998, McLaren and Welsh          
1936, Du Plessis and Visser 1995]. The first group of adjectives           
named “Iziphawuli” has 22 stems which are combined with these          
concords (see lines 1-21 and line 86 in Appendix A3). The second            
group of adjectives named “Izibaluli” has a number of stems          
which can be combined with its set of concords and we only            
managed to find 39 of these stems (see lines 21-40 and 87-89 in             
Appendix A3). The third group named “izimnini” has stems         
which are formed from different aspects of the grammar such as           
absolute pronouns, “iziphawuli” and nouns (see lines 42-65 and         
90-94 in Appendix A3). The other subgroup named “Izichazi         
Zokukumbi” and the last subgroup that we looked at is named           
“Izichazi Zoquko” which are formed with the two stems “dwa”          
and “nke” (see lines 73-84 and 92-94 in Appendix A3). 



 

All of the rules described above were found in books [Satyo 1999,            
Pahl et.al 1997, Dowling and Wise 1998, McLaren and Welsh          
1936, Du Plessis and Visser 1995]. 

3.4.4 Pronouns 
Pronouns in isiXhosa are called ‘izimelabizo’ and they are also          
subgrouped into different subsections. We have first looked at         
absolute pronouns, then demonstrative pronouns and then after        
that looked at Izimelabizo zoquko and izimelabizo zochazo.        
Demonstrative pronouns were mostly morphemes that were not        
combined with any other morphemes in most cases (see lines          
11-19 in Appendix A4). Absolute pronouns include words such as          
yena (meaning ‘him’/’her’ in English translation) which can only         
be combined with prefixes ‘a’, ‘e’, or ‘o’ (see lines 1-9 and line             
32 in Appendix A4). After these, we have then looked at           
izimelabizo zoquko which are pronouns used in grouping        
things/people together and we have not looked at those that          
involve numbers due to time constraints. Lastly we looked at          
izimelabizo zochazo which are used for purposes of informing us          
about the place/location of the noun, for both of these subgroups           
see lines 21-30 and line 34 in Appendix A4. All of these rules             
were found in books [Satyo 1999, Pahl et.al 1997, Dowling and           
Wise 1998, McLaren and Welsh 1936, Du Plessis and Visser          
1995]. 

3.4.5 Possessives 
Dowling and Wise [1998] stated that possessives occur quite more          
often in isiXhosa sentences and text. Thus for the better accuracy           
of our spelling error detector we have decided to also look at them             
in order to be able to recognise a huge chunk of these which             
would then boost the overall accuracy of our error detector.          
Possessives are also grouped according to the language        
characteristics they are based on, e.g we have possessives for          
nouns, verbs, e.t.c. In this project we have mainly focused on           
possessives for pronouns and then looked at some noun         
possessives aswell, but due to time constraints we could not cover           
much of these noun possessives. For a greater detail of this work            
on possessive please look at Appendix A5 below. [Satyo 1999,          
Pahl et.al 1997] 

3.5 Use Case 
The system can be used by anyone who is familiar with the            
language and would like to write something for the language. It           
could also be used by someone who is trying to learn the language             
as it would tell them when their words are incorrectly spelled. A            
usecase for this system is not included due to the fact that the             
system has a very basic functionality. 

3.6 Implementation 
We have wrote the rules in SFST-PL (which is a programming           
language that SFST uses) and with regards to testing the accuracy           
of our spellchecker we used Java as a programming language,          
where we developed a java swing GUI that allow users to just            
input words (either manually or by uploading a text file) and then            
run it through our error detector which then flags/highlight         
incorrectly spelled words. This interface was implemented in the         
testing stage of the error detector development since we wanted a           
system which was more simpler to use compared to the Linux           
terminal which was used prior. 

Github was used as a version control system which then allowed           
us to be able to make changes to the code whenever we wanted to              
revert back to a code that we had modified if some rules did not              
work or perform as expected. 

4. EVALUATION 

4.1 Hypothesis 
Test 1: The noun rules will have an accuracy rate of 60% or             
below since it is expected that the rules will regard some           
incorrectly spelled words as correct. 

Test 2: The verb rules will achieve a very high accuracy rate of             
90% or above since they will only accept valid isiXhosa verbs. 

Test 3: The adjective rules will have an accuracy rate of 50% or             
below since we did not manage to find a very large portion of the              
adjective roots. 

Test 4: The pronouns will have an accuracy rate of  90% or above. 

Test 5: The possessions will have a high accuracy of 80% or            
above. 

Test 6: The overall integrated system will achieve a very high           
accuracy rate of 85% or above. 

4.2 Experiment Design 
The aim of the entire experiment is to determine the accuracy of            
the transducer/rules that have been implemented. The system will         
be tested in two iterations. 

The first iteration is for testing the rules with words that belong to             
the grammar aspect (the POS category) in which the rules are           
written for. The first experiment is for the individual transducer          
and it involves extracting a number of words from the text which            
belong to the POS category of the rules and then test them with             
the rules. The extracted words will then be confirmed by another           
native speaker for surety. 

In the first iteration we also test the transducer using words from            
the other POS categories considered in this report. Note that in           
this case we don’t extract new words over and over again but            
rather we store each set of extracted words in a text file for each              
POS category and then just use those throughout the experiment.          
This iteration will allow us to compute the accuracy of our POS            
category tagging for all our rules. 

The second iteration involves testing the spelling error detection         
capabilities of each grammar aspect. This will also involve testing          
the integrated system with the whole corpus. This iteration is the           
one that will allow us to compute the accuracy rate of our spelling             
error detection. The results in both iterations will then be analysed           
using a confusion matrix which is clearly explained in subsection          
4.4. Since Karttunen [1996] motivated us to avoid time problems,          
in both iterations we also timed our experiments using the timer           
which is available in Java in order to see how long do our             
computations take. 

4.3 Experiment Documents 
We will use 7 documents which were collected from the African           
Language section as our corpus for the entire experiment. These          
documents were a mixture of medical and academic documents         
with the majority being medical documents. These documents        
were all correctly spelled, with just few incorrectly spelled words.          
The table below show some characteristics of these documents. 

        Table 1: Characteristics of the text documents 

 Total 
Words 

Unique 
Words 



 

Document 1 2203 1234 

Document 2 3215 1316 

Document 3 2731 1146 

Document 4 2759 1399 

Document 5 4704 2113 

Document 6 2186 992 

Document 7 4054 2400 

 

Our corpus has 21852 words, therefore it should be a reasonable           
text for our testing purposes. 

4.4 Evaluation matrix 
To evaluate the system we have used a confusion matrix. A           
confusion matrix basically classifies the results of the text into          
four categories: true positives (TP), true negatives (TN), false         
positives (FP) and false negatives (FN) as depicted in the          
following table taken from Ndaba et.al [2016]. 

 

        Table 2: Confusion Matrix 

 Correctly 
Spelled 

Incorrectly 
Spelled 

Correctly 
Spelled 

TP FP 

Incorrectl
y Spelled 

FN TN 

 

The accuracy rate of the error detector is (TP+TN)/Total number          
of words in the test dataset. This will be calculated for all the text              
documents and then a final accuracy rate will be the summation of            
all. In order to get a feeling of how each rules affect the overall              
accuracy of the system these test will first be run on each set of              
rules e.g noun rules only, verb rules only, adjective rules only and            
then they will also be run on the entire system which is the             
combination of all these rules. 

5. RESULTS AND FINDINGS 
We have managed to find a list of nouns from the isiXhosa            
lemmatizer which we downloaded in the RMA [2012] website.         
The file had 20826 nouns and we used it throughout the           
experiment for nouns. 

5.1 Results for rules by POS 
In this section we provide the results for our first iteration of the             
evaluation. In the first iteration we have used the rules for one            
POS category and tested them with words from different POS          
categories in order to be able to tell how good the rules are in              
terms of detecting whether a certain word is for that specific POS            
category or not. For example: we used the noun transducers and           
then tested on it using only noun words, then used only verbs,            
then only adjectives, then only pronouns and then only         

possessives (see Appendix B1 for results). The results from these          
are then used to calculate the accuracy of the transducer by           
averaging all the rates obtained when testing single POS         
categories. This then is the POS tagging accuracy rate for the           
nouns. 

This process was done for all the other POS categories aswell (see            
results in Appendix B2-B5). The table below is just a summary of            
how our POS tagging performed for each POS category. 

Table 3: POS Category results 

 Average Rate (%) Average Time 
(ms) 

Nouns 88.26 661.4 

Verbs 94.58 490.2 

Adjectives 97.91 490.8 

Pronouns 98.12 444 

Possessives 100 683 

 

Overall these results show that our rules are quite good in terms of             
POS tagging.  

5.2 Results for SpellChecking 
In the second iteration we have then used each set of rules to test              
each document so that we may know how many correctly spelled           
words for each POS category are there in each of these           
documents. This also allows us to be able to tell the spelling error             
detection rate for each set of rules. The results are as follows: 

      Table 4: Number of unrecognised words per rules 

 Rejected 
Nouns 

Rejected 
Verbs 

Rejected 
Adjectives 

Rejected 
Pronouns 

Document 1 1432 1728 2119 2164 

Document 2 2103 2371 3030 3150 

Document 3 1732 2089 2617 2690 

Document 4 1804 2148 2643 2714 

Document 5 3149 3843 4528 4636 

Document 6 1470 1637 2049 2152 

Document 7 2859 3387 3934 3998 

 

From Table 4 above: The noun rules have detected 33.42% of the            
words as noun, verb rules have detected that 21.27% of the corpus            
is made up of verbs, adjective rules have detected 4.3% as correct            
adjectives, pronouns rules detected 2% of the corpus as pronouns          
and possessives rules detect 1.34% of the words in the corpus as            
correctly spelled possessives.  



 

5.3 Results for the overall system 
In terms of testing the overall system we have used all the 7             
documents, but note that these documents were not modified so          
there are many words that are not recognised by the spellchecker           
as we did not have rules to cater for them. 

       Table 5: Words rejected by the error detector   

 Rejected Words Percentage (%) 

Document 1 1213 55.06 

Document 2 2103 65.41 

Document 3 1732 63.42 

Document 4 1804 65.39 

Document 5 3149 66.94 

Document 6 1470 67.25 

Document 7 2859 70.52 

 

Therefore, only 6522 words were recognised as correct by the          
spellchecker. Since the spellchecker did not implement all POS         
categories of the language, the overall accuracy below is         
measured by only considering the categories that we have rules          
for. As a results words which are incorrectly spelled according to           
the error detector are neither nouns, verbs, adjectives, pronouns         
nor possessives are regarded as true negatives. 

    Table 6: Results in a  Confusion Matrix  

 Correctly 
Spelled 

Incorrectly 
Spelled 

Correctly 
Spelled 

5899 4120 

Incorrectl
y Spelled 

76 11757 

 

Therefore, the accuracy of these rules is (11757+5899)/21852 =         
80.8% 

5.4 Results analysis 
With regards to the incorrectly spelled words when testing using          
the noun transducer we found that nouns that began with letters w,            
y, z were regarded as misspelled. Also some of the nouns that            
were two words separated by white spaces were regarded as          
misspelled because we treat words separated by spaces as two          
different words. 

When we were looking for possessives in the documents we only           
found a very small number of these, which in our case depicts that             
isiXhosa text does not have much possessives rather it mainly has           
nouns and verbs, so the argument that motivated us to look at this             
aspect was thus not true.  

Considering the fact that we have tested the nouns with a very big             
text file, we are certainly sure that our rules can perform better            

than most systems. Both the pronouns and possessives achieved         
very high accuracy since there were not too many words found for            
these aspects, and thus we cannot enforce their accuracy as we are            
uncertain about how they would perform when tested with a very           
large text.  

Some of the words which are regarded as incorrect by the           
integrated morphological analyser are words which are: not        
nouns, verbs, adjectives, pronouns or possessives. These words        
are then not counted as words which should be recognised as           
correctly spelled words since there are no rules in our system to            
recognise them. We have obtained these by looking through the          
spelled and misspelled words produced by the system. 

The time which our computations take is reasonable enough for          
any spellchecking purposes, therefore separating the transducers       
into multiple files for each POS category has worked well. Our           
hypotheses have been falsified as shown by the results from the           
experiment.  

6. CONCLUSION 
The project primarily aimed at investigating the feasibility of         
developing a morphological analyser for isiXhosa. The project has         
shown that it is feasible to develop an error detector for isiXhosa            
using the rule-based approach and this project resulted in the          
successful implementation of the morphological analyser with       
noun, verb, adjectives, pronouns and possessives rules. 

From these evaluation conducted in this project the accuracy rate          
for POS tagging is 88.26% for the noun rules, 94.58% for verb            
rules, 97.91% for adjective rules, 98.12% for pronoun rules and          
100% for the possessives rules. The overall spellchecker received         
an accuracy of 80.8%.  

The statistical based approach (presented on Nthabiseng       
Moshiane’s paper) received a lower accuracy when tested with         
more nouns that were not in the dictionary that it used. Therefore,            
since the rule-based approach has been able to successfully detect          
more nouns than the statistical approach in the near future it might            
be very good in terms of accuracy to combine the best features            
from the two approaches. 

7. FUTURE WORK 
With no prior spelling checker for isiXhosa, a future project might           
look into providing a user interface for this morphological         
analyser so that end users can be able to use the spellchecker            
without any complicated steps to follow. Due to time constraints,          
the work provided here has not looked at all the morphology or            
POS category of the language and thus it is unable to function as a              
full spellchecker for the language, so work can be done on the            
aspects that were left out in this project. Thus, another future           
project might concentrate and focus in the rest of the grammar and            
also provide spelling error corrections for the incorrectly spelled         
words. 
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Appendix A: IsiXhosa rules implemented using SFST 
A1: Nouns 

 

 



 

 

 

A2: Verbs 

 

 



 

 

 

 

 



 

 

 



 

A3: Adjectives

 

 

 



 

 

A4: Pronouns 

 



 

A5: Possessives

 

 

 

Appendix B: Results for POS Category evaluation 

B1: Nouns 

 Test 1 Test 2 Test 3 Test 4 Test 5 

POS category Nouns Verbs Adjectives Pronouns Possessives 

Number of 
words  

20841 171 183 64 46 

Inserted 
incorrect words 

15 22 43 10 8 

TP 18359 39 32 1 0 

FP 2477 0 0 0 0 

FN 0 33 30 3 3 

TN 15 99 121 60 43 

Time 2787ms 150ms 163ms 107ms 100ms 



 

Accuracy 88.16% 80.70 83.6 95.37 93.47 

 
B2: Verbs 

 

 Test 1 Test 2 Test 3 Test 4 Test 5 

POS category Verbs Adjectives Pronouns Possessives Nouns 

Number of words  171 183 64 46 20841 

Inserted incorrect 
words 

22 43 10 8 79 

TP 133 6 15 0 2141 

FP 27 0 0 0 0 

FN 0 15 2 0 3 

TN 11 162 47 46 18700 

Time 156ms 138ms 109ms 106ms 1942ms 

Accuracy 84.21 91.8 83.6 100 100 

 
 

 

B3: Adjectives 

 

 Test 1 Test 2 Test 3 Test 4 Test 5 

POS category Adjectives Pronouns Possessives Verbs Nouns 

Number of words  183 64 46 171 20841 

Inserted incorrect 
words 

43 10 8 22 15 

TP 125 6 5 0 71 

FP 15 0 0 0 0 

FN 0 0 1 0 8 

TN 43 58 40 171 20762 

Time 145ms 101ms 122ms 142ms 1944ms 

Accuracy 91.8 100 97.8 100 99.96 



 

 
 

B4: Pronouns 

 

 Test 1 Test 2 Test 3 Test 4 Test 5 

POS category Pronouns Possessives Adjectives Verbs Nouns 

Number of words  64 46 183 171 20841 

Inserted incorrect 
words 

10 8 43 22 15 

TP 41 0 0 0 1 

FP 6 0 0 0 0 

FN 0 0 0 0 0 

TN 17 46 183 183 20480 

Time 104ms 98ms 137ms 171ms 1710ms 

Accuracy 90.6 100 100 100 100 

 

 

 
 

 
B5: Possessives 

 Test 1 Test 2 Test 3 Test 4 Test 5 

POS category Possessives Pronouns Adjectives Verbs Nouns 

Number of words  46 64 183 171 20841 

Inserted incorrect 
words 

8 10 43 22 15 

TP 38 0 0 0 1 

FP 0 0 0 0 0 

FN 0 0 0 0 0 

TN 8 64 183 171 20480 

Time 464ms 880ms 143ms 134ms 1794ms 

Accuracy 100 100 100 100 100 

 


