

A Rule Based Spelling Error Detector for IsiXhosa

Siseko Neti
Department of Computer Science

University of Cape Town
Rondebosch, Cape Town, 7700

ntxsis001@myuct.ac.za

ABSTRACT
Spellchecking is an important tool for the writing of text and with
the increase in text based communication spellcheckers have
become increasingly important. With the few advances that have
been made in the field of spellchecking for Nguni languages, there
are currently two spellcheckers available for the Nguni language
isiXhosa, which both have limitations in terms of their
functionality, scope and accuracy. In this report a rule based
approach for isiXhosa spelling error detection was investigated.
As a result we have implemented a system and wrote some of the
grammar rules for the nouns, verbs, adjectives, pronouns and
possessives which had effect on the spelling of words.

The system was implemented using a tool called SFST and Java,
with Github used as a version control system. The system was
tested in two iterations where we first tested the rules individually
and then combined them as one system which was also tested on
its own. From these tests the accuracy rate for POS tagging is
88.26% for the noun rules, 94.58% for verb rules, 97.91% for
adjective rules, 98.12% for pronoun rules and 100% for the
possessives rules. The spelling error detection of the overall
system received an accuracy of 80.8%.

Keywords
Morphological Analyser, Error Detector, IsiXhosa, SpellChecker,
Natural Language Processing, POS Tagging.

1. INTRODUCTION
Spellchecking is the act of detecting whether a word form is
correct or not [Rios 2011] and it is used in many text based
computer application. With the increase in the use of text based
communication (social media messaging, email, e.t.c) spelling
error detection has become increasingly important since
incorrectly spelled words can cause confusion and
misunderstanding in the communication.

Even though there is a number of projects that have been done in
the field of spellchecking, only a few exist for Nguni languages
and from these, only Spellchecker.net and an OpenOffice plugin
are available for isiXhosa. Spellchecker.net is a web-based
spellchecker that offers error detection and correction of
misspelled words for various languages including isiXhosa.
Spellchecker.net has no documentation for the spellchecker. The
OpenOffice plugin is outdated and thus could not be used
anymore and also no documentation was found about it.

On top of the isiZulu spellchecker developed by Ndaba et.al
[2016], another spellchecker for one of the Nguni languages might
be advantageous to the residents of this country since people are
generally more comfortable and prefer to interact with technology
in their native language [Pretorius and Bosch 2003]. IsiXhosa is
chosen amongst all the other languages since it is closely related

to all the other Nguni languages and we hope that any work done
on this language can easily be bootstrapped to any of the Nguni
languages [Mzamo et.al 2015].

Since the 11 official South African languages belong to the lesser
studied and computer resourced languages in the world the
government of South Africa has decided to have an open source
repository for data/information about all these languages
[Pretorius and Bosch 2009]. The repository is called RMA
(https://rma.nwu.ac.za/) and currently it has 32 files for isiXhosa.
Considering the fact that isiXhosa is an agglutinative language,
using existing files to detect incorrectly spelled words may not
produce a good spelling error detection accuracy rate since these
files may not have most words of the language.

The most common and widely used spellchecking approach is the
statistical based approach, but as stated above due to the
agglutinative nature and the scarcity of computer resources for
isiXhosa this approach might not perform at its best. Thus this
project mainly focuses on investigating the feasibility of an error
detector for isiXhosa using the rule based approach. Based on this
investigation we then aim at comparing the accuracy of the rule
based approach (presented in this paper) with the statistical based
approach (presented on Nthabiseng Moshiane’s paper).

Furthermore, the project’s objective was the development of a
spelling error detector for the isiXhosa language using the rule
based approach. This is a theory based approach which focuses on
studying and analysing the morphological structure of isiXhosa.
We use these morphological structures and then write them as
regular expression which will then be encoded as finite state
transducers.

These kind of transducers give us a system that we call a
morphological analyser and from this morphological analyser we
will be able to feed in words which will then be checked whether
they satisfy the rules or not. If they do then they will be regarded
as correctly spelled, otherwise not.

This report first introduces a number of related papers and
projects. Then it focuses on the design and implementation of the
system. Thereafter it provides an in-depth analysis of how the
system will be evaluated and then present results on the
performance of the system in this evaluation. Finally, the report
presents the conclusions that were reached as well as areas for
future works.

2. BACKGROUND AND RELATED
WORK
2.1 Background
An agglutinating language is one whose words are formed by a
combination of different morphemes where these morphemes are
not changed prior their use in any word [Prószéky and Kis 1999].

Theron and Cloete [1997] show that isiXhosa should not be
treated as a simple non-agglutinative language as the tool created
based on this assumption will only work for some parts of the
language. To show this, Theron and Cloete [1997] analysed rules
pertaining noun-locative pairs.

Clark and Araki [2011] highlights the problem faced in the
informal/casual writing of English which most often does not
conform with the rules of spelling, punctuation and grammar. As a
solution to this problem, automated tokenization, word matching
and replacement techniques were used in combination with a
high-quality, large scale, manually compiled database. In this
program, firstly, this technique works by taking the user input and
tokenizing it using regular grammar rules defined in PyParsing
(another approach for defining grammars other than the lexc/yacc
for defining regular expressions) and then they check the
tokenized word against their database of defined words. This
works well for English but may not work for isiXhosa due to the
huge grammar difference between isiXhosa and English.

There are currently two approaches that can be followed for
developing an isiXhosa spelling error detector. The two
approaches are the rule-based approach (presented in this paper)
and the statistical based approach which uses dictionary lookup
and/or n-gram analysis for spelling error detection (presented in
Nthabiseng Mashiane’s paper).

As mentioned in the section above, amongst these two
approaches, the most popular approach in spellchecking is the use
of a text corpus to flag incorrectly spelled words. Bosch and
Eiselen [2005] highlight that since isiXhosa is a highly
agglutinative language such text would be extremely huge and
thus would consume a large amount of physical memory, which is
not ideal for spellcheckers.

The rule based approach has been followed and has worked well
in a number of projects that were based on agglutinative
languages. These projects are discussed in the following
subsection.

2.2 Related Work
Morphological analysis has been used in the spellchecking of
most/many agglutinative languages, this is evident by projects
such as the ones stated below. This morphological analyser is
basically a finite state transducer that is built from the morphology
of the language.

In an attempt to create a spellchecker for Quechua which is a
strongly agglutinative and suffixing language from South
America, a morphological analyser which used the XFST tool was
produced [Rios 2011].

Katushemererwe [2010] describes the implementation of a
morphological analyser using the XFST tool in analysing the
morphology of the Runyakitara language which is an
agglutinative Bantu language from Uganda. This analyser was
reported to have an accuracy of 80% accuracy rate on Runyakitara
nouns.

Kessikbayeva and Cicekli [2016] describe the implementation of a
morphological analyser for Kazach which is an agglutinative
language spoken in countries such as China, Russia, and more.
This morphological analyser is reported to have an accuracy rate
of 87%.

Kumar et.al [2012] developed a morphological analyser for Hindi
using the SFST tool and the analyser was reported to have an

accuracy rate of 97%. The morphological analyser developed was
used in a Part Of Speech (POS) Tagger based on Stanford POS
Tagger.

[Lipps] describes the implementation of a morphological analyser
for an East African Bantu language called Swahili. The
morphological analyser was implemented using the XFST tool
and it was based on some of the noun, verb, nominal and
adjectival morphology of the language.

Computational morphological analysers for Nguni languages has
been reported to be feasible by Pretorius and Bosch [2002] where
they produced a functional noun prototype of a morphological
analyser for isiZulu. They further extended their work to other
POS categories such as verbs and from this work a morphological
analyser named ZuluMorph for isiZulu was produced.
Furthermore, [Bosch et.al 2008, Pretorius and Bosch 2009]
describe the process of bootstrapping the already existing
morphological analyser for isiZulu to develop one for isiXhosa.
Both of these papers reported that the process used the XFST tool
and that using ZuluMorph as an already existing prototype took
less development time for isiXhosa than it was when ZuluMorph
was first developed. Bosch et.al [2008] also reported the
morphological analyser to have correctly analysed 71.10% of
isiXhosa words.

Agglutinative languages such as Runyakitara, Quechua,
Runyakitara, Hindi and Kazach which have been investigated for
error detection have used and shown that morphological analysis
gives higher accuracy in spelling error detection of such
languages. Therefore in the following section we discuss the
design and implementation of a morphological analyser for
isiXhosa.

3. SYSTEM DESIGN AND
IMPLEMENTATION
3.1 Tools and Technologies
We have looked at a number of finite state tools such as the Xerox
Finite State Tool (XFST), Helsinki Finite-State Tool (HFST),
OpenFST, Foma and Jflap but since we could not obtain the
functionality and results that we wanted in some of these tools, we
then decided to use the Stuttgart Finite-State Transducer Tool
(SFST) which is freely available under the GNU Public License.
SFST is a linux based tool which through its robust programming
language (SFST-PL) supports many different formats of regular
expressions such as the ones used in grep, sed or Perl [Schmid
2005]. Below are some of the reasons and motives as to why all
the other tools were not chosen.

3.1.1 XFST
XFST is a commercial software/tool, thus since we want the
spellchecker to be freely available to everyone we decided not to
use this tool.

3.1.2 JFlap
JFlap is a package of graphical tools that can be used for
experimenting with topics in the computer science area of formal
language and automata theory [Rodger et.al 2006]. The tool did
not allow us to define multiple regular expressions which could be
used simultaneously. Also the regular expressions defined in the
tool cannot be used simultaneously with some set of correctly
spelled words.

3.1.3 HFST
Helsinki Finite-State Transducer Technology (HFST) is a
software intended for the implementation of morphological
analysers and other tools which are based on weighted and
unweighted finite state transducer technology. Regular expression
written using this tool can only be edited using this tool, and since
the tool supports weighted transducers it was a bit complicated
and confusing working with it since the tool forced us to specify
weights in some of our rules.

3.1.4 OpenFST
OpenFST is a library for weighted finite state transducers. Since
we did not want to include/use weights in our rules this tool could
not be used as it only support transducers that are weighted.

3.1.5 Foma
Foma which is a compiler, programming language, and C library
for constructing finite-state automata and transducers [Hulden
2009]. Foma support most functionalities that are supported by the
XFST tool and it is the one other tool that we could have worked
with since it offers all the functionality that we needed but we
were more comfortable in working with SFST than Foma.

3.2 Design Process
In developing this morphological analyser we first had to decide
on which aspects of the morphology to focus on. As a result we
have read about the morphology of the language which was found
in books [Dowling and Wise 1998, Pahl et.al 1997, Satyo 1999,
McLaren and Welsh 1936, Kosch 2011, Kotze 2003, Du Plessis
and Visser 1995]. After reading about the morphology and
consultating from Dr M Keet and Dr M Motinyane-Masoko we
then decided to firstly focus on nouns and verbs.

We then followed a similar approach as in [Kessikbayeva and
Cicekli 2016] where we created two different sets of two-level
rules for each part-of-speech (POS) category which were later
combined. We first created the orthographic rules which detect the
spelling of the morphemes in the language and then we created
the morphotactic rules which were specifying the allowed
combination of these morphemes. For example if we want to
detect the noun ‘abantu’ (belonging to noun class 2 and meaning:
people), then since the word is formed by two morphemes: aba-
and -ntu, our orthographic rules would detect whether these
morphemes are correctly spelled such that we don't have cases
like -nut instead of -ntu. The transducer rules would be as follows:

Then the morphotactic rules would allow us to make the correct
combination which is ‘abantu’ instead of ‘ntuaba’, and the
transducer for this would be:

These two set of rules for each POS category were then combined
to form a transducer for each category that we decide to look at.
These transducers for all these categories were then combined to
form the integrated system which is our morphological analyser.

As part of our rule design process, all of the rules which will be
described in subsections 3.4.1 - 3.4.5 have been confirmed by
some of the students from the African Language section at the
University of Cape Town. These rules were developed in an
iterative approach, where in each iteration we wrote the rules for
each POS category and then tested how each rule affected the
overall accuracy of the system.

3.3 Architecture
The architecture of the system is very simple, there is a backend
and a frontend. The backend interacts with the SFST program
using Java. A more detailed overview of the system is shown in
the system diagram below.

 Figure 1: System Architecture

The input/output layer in the backend is simply what takes the
user input and then split it into single words which are then passed
through the morphological analyser. On the frontend we simply
run a java program and then read a text file or enter words to be
spellchecked manually one by one. The user interface was
developed in Java Swing with the aim of allowing us to test the
accuracy of our error detector. Even though we have tried to make
an easy to use tool, user satisfaction was not the primary goal of
building the interface and thus no user evaluations have been done
for this interface.

3.4 Rule Design
We briefly discuss major parts of our rule design process in the
following subsections on a very high level definition, all
files/codes are commented nicely with more explanations. The
source code is available in the project website, on Github [Neti
2017] and also in Appendix A below.

In defining our rules we have used the following SFST syntax as
defined and stated by Schmid [2005]:

1. Variables are defined by using two dollar signs and
putting the variable name inside them e.g $mapp$ = a:e
defines the variable name mapp as a mapping of an ‘e’

to ‘a’. When calling these variable names we also use
the name $mapper$ as it is.

2. An ’or’ condition is represented by | and |\ defines the
’or’ condition between two consecutive lines.

3. The symbol & is used as an ‘and’ condition between
two statements.

4. % symbols are used for single line comments.

As an example, the snapshot below (figure 2) first starts with a
comment (as the first line starts with a percentage sign) saying
‘possessive pronoun prefixes’ and then it defines a variable called
‘pos_pref’ (as this is between two dollar signs) which is the
mapping of ‘a’ to an empty string or ‘o’ to an empty string. Note
that the ‘or’ operator used here is the one that is between two
consecutive lines.

 Figure 2: Snapshot from the possessive rules
For more information about the SFST syntax please refer to the
manual in Schmid [2005].

Bosch et.al [2008] reported that the greater morphological
analysis complexity of Nguni languages lies with the nominal and
verbal morphology. As a result we first looked at the noun and
verb rules, and thereafter looked at adjectives, pronouns and
possessives.

Karttunen [1996] suggest that in order to avoid time and space
problems transducers for different sections be separate and
combined at the end instead of having the entire system as a single
transducer. Thus, we have separated our transducers with regards
to different morphological groups and each of the following
subsection represents a separate transducer.

3.4.1 Nouns
We have first looked at the noun classes and have separated the
nouns according to their classes. The 15 noun classes for isiXhosa
are separated/differentiated with their prefixes so we have used
these prefixes together with a set of rules that determine the
orthography for the stems of the noun which were found in [Satyo
1999, Pahl et.al 1997]. Since the orthography of noun stems is
quite complex, we only accept noun stems that do not have more
than one consecutive vowel and has no more than three
consecutive consonants (see line 7 in Appendix A1). Also no
consonant is allowed to follow itself in the stem (see line 13 in
Appendix A1) and then finally the stem has to end with a vowel
(see line 37 in Appendix A1). These stems not only cater for noun
stems but also cater for any other stems in the language as a
whole, so we expect that the rules will detect more words as
correctly spelled than should be. [Satyo 1999, Pahl et.al 1997,
Dowling and Wise 1998, McLaren and Welsh 1936, Du Plessis
and Visser 1995]

We have also looked at compound nouns but figuring out that the
noun stems can recognise any words these compound nouns were
also recognised by the rules of the regular nouns. Compound
nouns are basically formed by combining two words, where one
of them should be a noun [Satyo 1999, Pahl et.al 1997, Dowling
and Wise 1998]. So based on that we have catered for cases where
a noun is combined with another noun, an absolute pronoun, or
combined with an adjective. In terms of morphotactic rules we
have catered only for the following cases:

1. A noun is combined with another noun. In this case our
rules output a final word defined by :
pref1+root1+suffix1+root2+suffix2, where pref1 is the
prefix of the first noun, root1 is the root of the first
noun, suffix1 is the suffix of the first noun, root2 is the
root of the second noun and suffix2 is the suffix of the
second noun.

2. A noun is combined with an absolute pronoun. The
output of our rules is pref1+root1+suffix1+root2, where
pref1 is the noun prefix, root1 is the root of the noun,
suffix1 is the suffix of the noun and root2 is the root of
the pronoun.

3. A noun is combined with an adjective and the output is
pref1+root1+suffix1+adjective_stem, where pref1 is the
noun prefix, root1 is the root of the noun, suffix1 is the
suffix of the noun and adjective_stem is the stem of the
adjective.

Where a prefixes could either be a subject concord, a copulative
concord, an object concord or a combination of 2 or all these
concords in some cases. Some compound nouns with complex
grammar were not covered in this work due to time constraints.

3.4.2 Verbs
We have managed to find a file with verb roots from the [Rma:
2012] website. The file had 4354 verb roots with 121 of the roots
beginning with vowels. So now the main objective was on
determining the orthographic rules of the prefixes and the allowed
combination of prefixes and suffixes for these roots.

The prefixes are categorised into different combinations and they
can be able to recognise only the verbs from whose roots are
available in the file mentioned above.

We have managed to find the orthographic rules and the allowed
combinations of prefixes and suffixes for verbs in the remote past
tense, present tense, future tense, past subjunctive mood, izixando
from the books. [Satyo 1999, Pahl et.al 1997, Dowling and Wise
1998, McLaren and Welsh 1936, Du Plessis and Visser 1995].
These rules have been written as regular expressions (see
Appendix A2 below).

3.4.3 Adjective
Adjectives were the next POS category that we have looked at
after verbs. Adjectives are subgrouped in the isiXhosa language
and in this work we have looked at all of these subgroups. The
prefixes for the adjectives are are called “adjective concords” and
each group has its own set of adjective concords [Satyo 1999,
Pahl et.al 1997, Dowling and Wise 1998, McLaren and Welsh
1936, Du Plessis and Visser 1995]. The first group of adjectives
named “Iziphawuli” has 22 stems which are combined with these
concords (see lines 1-21 and line 86 in Appendix A3). The second
group of adjectives named “Izibaluli” has a number of stems
which can be combined with its set of concords and we only
managed to find 39 of these stems (see lines 21-40 and 87-89 in
Appendix A3). The third group named “izimnini” has stems
which are formed from different aspects of the grammar such as
absolute pronouns, “iziphawuli” and nouns (see lines 42-65 and
90-94 in Appendix A3). The other subgroup named “Izichazi
Zokukumbi” and the last subgroup that we looked at is named
“Izichazi Zoquko” which are formed with the two stems “dwa”
and “nke” (see lines 73-84 and 92-94 in Appendix A3).

All of the rules described above were found in books [Satyo 1999,
Pahl et.al 1997, Dowling and Wise 1998, McLaren and Welsh
1936, Du Plessis and Visser 1995].

3.4.4 Pronouns
Pronouns in isiXhosa are called ‘izimelabizo’ and they are also
subgrouped into different subsections. We have first looked at
absolute pronouns, then demonstrative pronouns and then after
that looked at Izimelabizo zoquko and izimelabizo zochazo.
Demonstrative pronouns were mostly morphemes that were not
combined with any other morphemes in most cases (see lines
11-19 in Appendix A4). Absolute pronouns include words such as
yena (meaning ‘him’/’her’ in English translation) which can only
be combined with prefixes ‘a’, ‘e’, or ‘o’ (see lines 1-9 and line
32 in Appendix A4). After these, we have then looked at
izimelabizo zoquko which are pronouns used in grouping
things/people together and we have not looked at those that
involve numbers due to time constraints. Lastly we looked at
izimelabizo zochazo which are used for purposes of informing us
about the place/location of the noun, for both of these subgroups
see lines 21-30 and line 34 in Appendix A4. All of these rules
were found in books [Satyo 1999, Pahl et.al 1997, Dowling and
Wise 1998, McLaren and Welsh 1936, Du Plessis and Visser
1995].

3.4.5 Possessives
Dowling and Wise [1998] stated that possessives occur quite more
often in isiXhosa sentences and text. Thus for the better accuracy
of our spelling error detector we have decided to also look at them
in order to be able to recognise a huge chunk of these which
would then boost the overall accuracy of our error detector.
Possessives are also grouped according to the language
characteristics they are based on, e.g we have possessives for
nouns, verbs, e.t.c. In this project we have mainly focused on
possessives for pronouns and then looked at some noun
possessives aswell, but due to time constraints we could not cover
much of these noun possessives. For a greater detail of this work
on possessive please look at Appendix A5 below. [Satyo 1999,
Pahl et.al 1997]

3.5 Use Case
The system can be used by anyone who is familiar with the
language and would like to write something for the language. It
could also be used by someone who is trying to learn the language
as it would tell them when their words are incorrectly spelled. A
usecase for this system is not included due to the fact that the
system has a very basic functionality.

3.6 Implementation
We have wrote the rules in SFST-PL (which is a programming
language that SFST uses) and with regards to testing the accuracy
of our spellchecker we used Java as a programming language,
where we developed a java swing GUI that allow users to just
input words (either manually or by uploading a text file) and then
run it through our error detector which then flags/highlight
incorrectly spelled words. This interface was implemented in the
testing stage of the error detector development since we wanted a
system which was more simpler to use compared to the Linux
terminal which was used prior.

Github was used as a version control system which then allowed
us to be able to make changes to the code whenever we wanted to
revert back to a code that we had modified if some rules did not
work or perform as expected.

4. EVALUATION

4.1 Hypothesis
Test 1: The noun rules will have an accuracy rate of 60% or
below since it is expected that the rules will regard some
incorrectly spelled words as correct.

Test 2: The verb rules will achieve a very high accuracy rate of
90% or above since they will only accept valid isiXhosa verbs.

Test 3: The adjective rules will have an accuracy rate of 50% or
below since we did not manage to find a very large portion of the
adjective roots.

Test 4: The pronouns will have an accuracy rate of 90% or above.

Test 5: The possessions will have a high accuracy of 80% or
above.

Test 6: The overall integrated system will achieve a very high
accuracy rate of 85% or above.

4.2 Experiment Design
The aim of the entire experiment is to determine the accuracy of
the transducer/rules that have been implemented. The system will
be tested in two iterations.

The first iteration is for testing the rules with words that belong to
the grammar aspect (the POS category) in which the rules are
written for. The first experiment is for the individual transducer
and it involves extracting a number of words from the text which
belong to the POS category of the rules and then test them with
the rules. The extracted words will then be confirmed by another
native speaker for surety.

In the first iteration we also test the transducer using words from
the other POS categories considered in this report. Note that in
this case we don’t extract new words over and over again but
rather we store each set of extracted words in a text file for each
POS category and then just use those throughout the experiment.
This iteration will allow us to compute the accuracy of our POS
category tagging for all our rules.

The second iteration involves testing the spelling error detection
capabilities of each grammar aspect. This will also involve testing
the integrated system with the whole corpus. This iteration is the
one that will allow us to compute the accuracy rate of our spelling
error detection. The results in both iterations will then be analysed
using a confusion matrix which is clearly explained in subsection
4.4. Since Karttunen [1996] motivated us to avoid time problems,
in both iterations we also timed our experiments using the timer
which is available in Java in order to see how long do our
computations take.

4.3 Experiment Documents
We will use 7 documents which were collected from the African
Language section as our corpus for the entire experiment. These
documents were a mixture of medical and academic documents
with the majority being medical documents. These documents
were all correctly spelled, with just few incorrectly spelled words.
The table below show some characteristics of these documents.

 Table 1: Characteristics of the text documents

 Total
Words

Unique
Words

Document 1 2203 1234

Document 2 3215 1316

Document 3 2731 1146

Document 4 2759 1399

Document 5 4704 2113

Document 6 2186 992

Document 7 4054 2400

Our corpus has 21852 words, therefore it should be a reasonable
text for our testing purposes.

4.4 Evaluation matrix
To evaluate the system we have used a confusion matrix. A
confusion matrix basically classifies the results of the text into
four categories: true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN) as depicted in the
following table taken from Ndaba et.al [2016].

 Table 2: Confusion Matrix

 Correctly
Spelled

Incorrectly
Spelled

Correctly
Spelled

TP FP

Incorrectl
y Spelled

FN TN

The accuracy rate of the error detector is (TP+TN)/Total number
of words in the test dataset. This will be calculated for all the text
documents and then a final accuracy rate will be the summation of
all. In order to get a feeling of how each rules affect the overall
accuracy of the system these test will first be run on each set of
rules e.g noun rules only, verb rules only, adjective rules only and
then they will also be run on the entire system which is the
combination of all these rules.

5. RESULTS AND FINDINGS
We have managed to find a list of nouns from the isiXhosa
lemmatizer which we downloaded in the RMA [2012] website.
The file had 20826 nouns and we used it throughout the
experiment for nouns.

5.1 Results for rules by POS
In this section we provide the results for our first iteration of the
evaluation. In the first iteration we have used the rules for one
POS category and tested them with words from different POS
categories in order to be able to tell how good the rules are in
terms of detecting whether a certain word is for that specific POS
category or not. For example: we used the noun transducers and
then tested on it using only noun words, then used only verbs,
then only adjectives, then only pronouns and then only

possessives (see Appendix B1 for results). The results from these
are then used to calculate the accuracy of the transducer by
averaging all the rates obtained when testing single POS
categories. This then is the POS tagging accuracy rate for the
nouns.

This process was done for all the other POS categories aswell (see
results in Appendix B2-B5). The table below is just a summary of
how our POS tagging performed for each POS category.

Table 3: POS Category results

 Average Rate (%) Average Time
(ms)

Nouns 88.26 661.4

Verbs 94.58 490.2

Adjectives 97.91 490.8

Pronouns 98.12 444

Possessives 100 683

Overall these results show that our rules are quite good in terms of
POS tagging.

5.2 Results for SpellChecking
In the second iteration we have then used each set of rules to test
each document so that we may know how many correctly spelled
words for each POS category are there in each of these
documents. This also allows us to be able to tell the spelling error
detection rate for each set of rules. The results are as follows:

 Table 4: Number of unrecognised words per rules

 Rejected
Nouns

Rejected
Verbs

Rejected
Adjectives

Rejected
Pronouns

Document 1 1432 1728 2119 2164

Document 2 2103 2371 3030 3150

Document 3 1732 2089 2617 2690

Document 4 1804 2148 2643 2714

Document 5 3149 3843 4528 4636

Document 6 1470 1637 2049 2152

Document 7 2859 3387 3934 3998

From Table 4 above: The noun rules have detected 33.42% of the
words as noun, verb rules have detected that 21.27% of the corpus
is made up of verbs, adjective rules have detected 4.3% as correct
adjectives, pronouns rules detected 2% of the corpus as pronouns
and possessives rules detect 1.34% of the words in the corpus as
correctly spelled possessives.

5.3 Results for the overall system
In terms of testing the overall system we have used all the 7
documents, but note that these documents were not modified so
there are many words that are not recognised by the spellchecker
as we did not have rules to cater for them.

 Table 5: Words rejected by the error detector

 Rejected Words Percentage (%)

Document 1 1213 55.06

Document 2 2103 65.41

Document 3 1732 63.42

Document 4 1804 65.39

Document 5 3149 66.94

Document 6 1470 67.25

Document 7 2859 70.52

Therefore, only 6522 words were recognised as correct by the
spellchecker. Since the spellchecker did not implement all POS
categories of the language, the overall accuracy below is
measured by only considering the categories that we have rules
for. As a results words which are incorrectly spelled according to
the error detector are neither nouns, verbs, adjectives, pronouns
nor possessives are regarded as true negatives.

 Table 6: Results in a Confusion Matrix

 Correctly
Spelled

Incorrectly
Spelled

Correctly
Spelled

5899 4120

Incorrectl
y Spelled

76 11757

Therefore, the accuracy of these rules is (11757+5899)/21852 =
80.8%

5.4 Results analysis
With regards to the incorrectly spelled words when testing using
the noun transducer we found that nouns that began with letters w,
y, z were regarded as misspelled. Also some of the nouns that
were two words separated by white spaces were regarded as
misspelled because we treat words separated by spaces as two
different words.

When we were looking for possessives in the documents we only
found a very small number of these, which in our case depicts that
isiXhosa text does not have much possessives rather it mainly has
nouns and verbs, so the argument that motivated us to look at this
aspect was thus not true.

Considering the fact that we have tested the nouns with a very big
text file, we are certainly sure that our rules can perform better

than most systems. Both the pronouns and possessives achieved
very high accuracy since there were not too many words found for
these aspects, and thus we cannot enforce their accuracy as we are
uncertain about how they would perform when tested with a very
large text.

Some of the words which are regarded as incorrect by the
integrated morphological analyser are words which are: not
nouns, verbs, adjectives, pronouns or possessives. These words
are then not counted as words which should be recognised as
correctly spelled words since there are no rules in our system to
recognise them. We have obtained these by looking through the
spelled and misspelled words produced by the system.

The time which our computations take is reasonable enough for
any spellchecking purposes, therefore separating the transducers
into multiple files for each POS category has worked well. Our
hypotheses have been falsified as shown by the results from the
experiment.

6. CONCLUSION
The project primarily aimed at investigating the feasibility of
developing a morphological analyser for isiXhosa. The project has
shown that it is feasible to develop an error detector for isiXhosa
using the rule-based approach and this project resulted in the
successful implementation of the morphological analyser with
noun, verb, adjectives, pronouns and possessives rules.

From these evaluation conducted in this project the accuracy rate
for POS tagging is 88.26% for the noun rules, 94.58% for verb
rules, 97.91% for adjective rules, 98.12% for pronoun rules and
100% for the possessives rules. The overall spellchecker received
an accuracy of 80.8%.

The statistical based approach (presented on Nthabiseng
Moshiane’s paper) received a lower accuracy when tested with
more nouns that were not in the dictionary that it used. Therefore,
since the rule-based approach has been able to successfully detect
more nouns than the statistical approach in the near future it might
be very good in terms of accuracy to combine the best features
from the two approaches.

7. FUTURE WORK
With no prior spelling checker for isiXhosa, a future project might
look into providing a user interface for this morphological
analyser so that end users can be able to use the spellchecker
without any complicated steps to follow. Due to time constraints,
the work provided here has not looked at all the morphology or
POS category of the language and thus it is unable to function as a
full spellchecker for the language, so work can be done on the
aspects that were left out in this project. Thus, another future
project might concentrate and focus in the rest of the grammar and
also provide spelling error corrections for the incorrectly spelled
words.

8. ACKNOWLEDGMENTS
I would like to thank Dr Maria for the support and supervision of
the project. I would also like to thank Dr Motinyane-Masoko from
the African Language section of the University of Cape Town for
providing the books that were needed in getting the language rules
and the documents that were required for testing purposes.Also
like to thank the African Language section honours students for
looking and confirming my rules.

9. REFERENCES
[1] Bosch, S.E. and Eiselen, R., 2005. The effectiveness of

morphological rules for an isiZulu spelling checker. South
African Journal of African Languages, 25(1), pp.25-36.

[2] Bosch, S.E., Pretorius, L. and Fleisch, A., 2008.
Experimental bootstrapping of morphological analysers for
Nguni languages.

[3] Clark, E. and Araki, K., 2011. Text normalization in social
media: progress, problems and applications for a
pre-processing system of casual English. Procedia-Social and
Behavioral Sciences, 27, pp.2-11.

[4] Dowling, T and Wise, P. 1998. Speak Xhosa with Us:
Beginner to Advanced. Mother Tongues Multimedia
Development. ISBN 0-620-22192-5

[5] Du Plessis, J.A and Visser, M. 1995. Xhosa Syntax. Second
Edition. Via Afrika Limited. ISBN 0 7994 1326 7. 1-276

[6] Hulden, M., 2009, April. Foma: a finite-state compiler and
library. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computational
Linguistics: Demonstrations Session (pp. 29-32). Association
for Computational Linguistics.

[7] Karttunen, L., Chanod, J.P., Grefenstette, G. and Schille, A.,
1996. Regular expressions for language engineering. Natural
Language Engineering, 2(4), pp.305-328.

[8] Katushemererwe, F. and Hanneforth, T. 2010. fsm2 and the
morphological analysis of Bantu nouns–first experiences
from Runyakitara. International Journal of Computing and
ICT research. 4, 1, 58-69.

[9] Kessikbayeva, G. and Cicekli, I., 2016. A rule based
morphological analyzer and a morphological disambiguator
for kazakh language. Linguistics and Literature Studies, 4(1),
pp.96-104.

[10] Kosch, I. 2011. South African Journal of African Languages.
University of South Africa. Volume 1 Number 1. 138-158

[11] Kotze, A. 2003. South African Journal of African Languages.
University of South Africa. Volume 23 Number 1.

[12] Kumar, D., Singh, M. and Shukla, S., 2012. Fst based
morphological analyzer for Hindi language. arXiv preprint
arXiv:1207.5409.

[13] Lipps, J., xsma: A Finite-state Morphological Analyzer for
Swahili.

[14] McLaren, J and Welsh, G.H. 1936. A Xhosa Grammar.
Longmans, Green and Co.

[15] Mzamo, L., Helberg, A. and Bosch, S., 2015, November.
Introducing XGL-a lexicalised probabilistic graphical
lemmatiser for isiXhosa. In Pattern Recognition Association
of South Africa and Robotics and Mechatronics International
Conference (PRASA-RobMech), 2015 (pp. 142-147). IEEE.

[16] Ndaba,B., Suleman, H.,Keet,C.M.and Khumalo,L. 2016. The

Effects of a Corpus on isiZulu Spellcheckers based on
N-grams in IST-Africa Week Conference. 1-10. IEEE. DOI:
10.1109/ISTAFRICA.2016.7530643.

[17] Neti, S. 2017. IsiXhosa Morphological Analyser. Github
repository
https://github.com/sisekoreggie/Morphological-Analyser

[18] Pahl, H.W, Ntusi, D.M and Burns-Ncamishe, S.M. 1997.
IsiXhosa. Third Edition. APB. ISBN 0 7980 0062 7.

[19] Pretorius, L. and Bosch, S.E., 2002. Finite-state
computational morphology-treatment of the zulu noun. South
African computer journal, 2002(28), pp.30-38.

[20] Pretorius, L. and Bosch, S.E., 2003. Enabling computer
interaction in the indigenous languages of South Africa: The
central role of computational morphology. interactions,
10(2), pp.56-63.

[21] Pretorius, L. and Bosch, S., 2009, March. Exploiting
cross-linguistic similarities in Zulu and Xhosa computational
morphology. In Proceedings of the First Workshop on
Language Technologies for African Languages (pp. 96-103).
Association for Computational Linguistics.

[22] Prószéky, G. and Kis, B., 1999, June. A unification-based
approach to morpho-syntactic parsing of agglutinative and
other (highly) inflectional languages. In Proceedings of the
37th annual meeting of the Association for Computational
Linguistics on Computational Linguistics (pp. 261-268).
Association for Computational Linguistics.

[23] Rios, A. 2011. Spell checking an agglutinative language:
Quechua. In 5th Language and Technology Conference:
Human Language Technologies as a Challenge for
Computer Science and Linguistics. 51-55.

[24] Rma: 2012. https://rma.nwu.ac.za/. Accessed: 2017-04-03

[25] Rodger, S.H. and Finley, T.W., 2006. JFLAP: an interactive
formal languages and automata package. Jones & Bartlett
Learning.

[26] Satyo, S.C. 1999. Igrama Noncwadi LwesiXhosa Ibanga 10.
FIrst Edition. Via Africa. ISBN 0-7994-1105-1.

[27] Schmid, H., 2005, September. A programming language for
finite state transducers. In FSMNLP (Vol. 4002, pp.
308-309).

[28] Theron, P and Cloete, I. 1997. Automatic acquisition of
two-level morphological rules. In Proceedings of the fifth
conference on Applied natural language processing.
Association for Computational Linguistics. 103–110.

https://rma.nwu.ac.za/
https://github.com/sisekoreggie/Morphological-Analyser

Appendix A: IsiXhosa rules implemented using SFST
A1: Nouns

A2: Verbs

A3: Adjectives

A4: Pronouns

A5: Possessives

Appendix B: Results for POS Category evaluation

B1: Nouns

 Test 1 Test 2 Test 3 Test 4 Test 5

POS category Nouns Verbs Adjectives Pronouns Possessives

Number of
words

20841 171 183 64 46

Inserted
incorrect words

15 22 43 10 8

TP 18359 39 32 1 0

FP 2477 0 0 0 0

FN 0 33 30 3 3

TN 15 99 121 60 43

Time 2787ms 150ms 163ms 107ms 100ms

Accuracy 88.16% 80.70 83.6 95.37 93.47

B2: Verbs

 Test 1 Test 2 Test 3 Test 4 Test 5

POS category Verbs Adjectives Pronouns Possessives Nouns

Number of words 171 183 64 46 20841

Inserted incorrect
words

22 43 10 8 79

TP 133 6 15 0 2141

FP 27 0 0 0 0

FN 0 15 2 0 3

TN 11 162 47 46 18700

Time 156ms 138ms 109ms 106ms 1942ms

Accuracy 84.21 91.8 83.6 100 100

B3: Adjectives

 Test 1 Test 2 Test 3 Test 4 Test 5

POS category Adjectives Pronouns Possessives Verbs Nouns

Number of words 183 64 46 171 20841

Inserted incorrect
words

43 10 8 22 15

TP 125 6 5 0 71

FP 15 0 0 0 0

FN 0 0 1 0 8

TN 43 58 40 171 20762

Time 145ms 101ms 122ms 142ms 1944ms

Accuracy 91.8 100 97.8 100 99.96

B4: Pronouns

 Test 1 Test 2 Test 3 Test 4 Test 5

POS category Pronouns Possessives Adjectives Verbs Nouns

Number of words 64 46 183 171 20841

Inserted incorrect
words

10 8 43 22 15

TP 41 0 0 0 1

FP 6 0 0 0 0

FN 0 0 0 0 0

TN 17 46 183 183 20480

Time 104ms 98ms 137ms 171ms 1710ms

Accuracy 90.6 100 100 100 100

B5: Possessives

 Test 1 Test 2 Test 3 Test 4 Test 5

POS category Possessives Pronouns Adjectives Verbs Nouns

Number of words 46 64 183 171 20841

Inserted incorrect
words

8 10 43 22 15

TP 38 0 0 0 1

FP 0 0 0 0 0

FN 0 0 0 0 0

TN 8 64 183 171 20480

Time 464ms 880ms 143ms 134ms 1794ms

Accuracy 100 100 100 100 100

