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ABSTRACT 
Spellcheckers have become significantly important with the 

increase of text-based communication. There is however, very 
little support provided for spell checking in Nguni languages, of 
which two (isiZulu and isiXhosa) are the most spoken languages 
in South Africa. The aim of this research paper is to improve on 
spell checking for the Nguni language, isiZulu, by providing an 
error corrector that can accurately provide candidate corrections 
to misspelled isiZulu words using a statistical approach. The 
error corrector is then integrated with the isiZulu error detector 
developed by Ndaba et al. [12] and implemented by Norman 
Pilusa. 

This paper focusses on non-word error correction. Trigrams, 
minimum edit distance and probabilities of trigrams based on 
occurrence in corpus are used to construct the error corrector. 
The error corrector is tested on 6 000 auto-generated isiZulu 
spelling errors. These errors represent the 4 types of non-word 
errors that occur (substitution, insertions, deletions and 
transpositions). The performance of the error corrector is tested 
using confusion matrices.  

The experiment in section 4.3 was then performed on the 
whole system utilizing the auto-generated spelling errors. The 
system achieved a language recall rate of 89%, an error recall of 
84%, a language precision of 85% and an error precision of 88%. 
The error corrector was found to have an accuracy rate of 94%, 
which is well above the expected accuracy rate of 85%. The 
suggestion adequacy of the system was found to be 62%, which is 
also above the expected value of 60%. From the following results, 
the spell checker is found to be successful at detecting and 
correcting spelling errors using a statistical error model. 

1 INTRODUCTION 

 
The Bantu languages spoken in South Africa can be 

categorized under 2 branches - the Sotho-Tswana branch, 
comprising of Sesotho, Sesotho sa Leboa (Northern Sotho) and 
Setswana, and the Nguni branch, which comprises of isiZulu, 
isiXhosa, isiNdebele and siSwati. From the Nguni languages, 
isiZulu is the most widely spoken language in South Africa with 
22.7% of the population speaking isiZulu as a first/home 
language, followed by isiXhosa at 16%, whereas only 9.6% of 

South Africans identify with English as their first/home 
language1.  Although isiZulu is more widely spoken than English, 
there is currently not enough support provided for spelling error 
detection and correction. Two spellcheckers currently exist for 
isiZulu. One was developed by Ndaba et al. [12] and 
implemented by Norman Pilusa 2  and the other by 
spellchecker.net3. The former uses data-driven statistical models 
and n-grams and can only detect misspelled words. According to 
Ndaba et al. [12], the spellchecker has an accuracy rate of 89%. 
The latter can detect and correct misspelled words. The 
methodology and accuracy of this spellchecker is, however, not 
disclosed. 

The aim of this paper is to improve on spellchecking for the 
isiZulu language by developing an error corrector that can 
accurately provide candidate corrections to incorrectly spelled 
isiZulu words in a given input text. This error corrector is 
integrated with Ndaba et al.’s error detector to form a fully 
functional isiZulu spellchecker. Accuracy of the error corrector 
is measured by the number of words detected to be incorrect by 
the error detector, that the error corrector can provide candidate 
corrections to. 

A large amount of text is generated online on a daily basis 
that is informal and unedited by nature, requiring spelling error 
detection and correction [4, 9, 15]. Spellcheckers aim to detect 
two types of spelling errors that occur – non-word and real 
world (or context-based) spelling errors. Non-words errors are 
words that do not occur in a given language. These errors are 
usually caused by typographical errors made by the user when 
typing or by spelling a given word according to its 
pronunciation (phonetical errors). There are 4 types of non-word 
errors, viz. substitutions, insertions, deletions and transpositions 
[15]. Substitution is when a letter in a word is replaced with 
another, insertion is when a letter is added to a word, deletion is 
when a letter is omitted from a word and transposition is when a 
swap occurs between 2 adjacent letters in a given word [1, 6]. 

While non-word errors are categorized as non-existent words 
in a language, real-word errors denote words that are correctly 
spelled, but are used in the wrong context within a sentence [12, 
17].  

                                                                 
1 Nguni on Britannica Academic: 2017. 
http://academic.eb.com/levels/collegiate/article/55655. Accessed: 2017- 05- 08 
2 https://github.com/normanpilusa/Isizulu_Spellchecker 
3 https://www.spellchecker.net/africa_zulu_spell_checker.html 
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This paper presents a method for creating an isiZulu spelling 
error corrector for non-word errors using a statistical approach. 
The error corrector utilizes probabilities and trigrams to produce 
corrections for input words that are flagged as incorrect spelled. 

The paper consists of the following sections: related work, 
system design and implementation, experiment design and 
execution, results and discussion, conclusions and future works. 
Related work highlights the different statistical methods and 
components that have been used to construct existing spell 
checkers; system design and implementation details the methods 
and components used to develop the error corrector; experiment 
design and execution details the design of the experiment and 
how it was executed. This section also lists the evaluation 
metrics and hypotheses used to determine the success of the 
experiment. The results and discussion section highlights the 
results obtained from the experiment and what they indicate. 
The paper concludes with the conclusions and future works 
sections, which highlight the accuracy of the error corrector and 
the system as a whole and what can be done in future for 
spellchecking in isiZulu, 

2 RELATED WORK 
This section looks at the components of a spellchecker as well 

as n-grams and the minimum edit distance and their uses in 
developing spell checkers. This section also looks at various spell 
checkers that have been developed using a statistical approach. 

2.1 Components of a spell checker 
A spellchecker has the following 3 components - a body of 

text representing the language (corpus), an Error model (EM) 
and a Language model (LM) [14]. An LM in a spellchecker is 
used to determine how frequent a word occurs in a dictionary. A 
corpus can be used to build an LM [6]. An EM is an algorithm 
used for modelling spelling errors [14]. 

2.2 Corpus 
A corpus is a collection of written texts used for linguistic 

analysis4. The efficiency of the error model of a spellchecker is 
affected by the corpus used. A corpus can contain misspelled 
words, which may cause spellcheckers to identify misspelled 
words in an input string as correctly spelled and this may affect 
the accuracy rate of the spellchecker. For instance, [20] used the 
World Wide Web as a large noisy corpus without any human 
tweaking of the corpus, which included many misspelled words. 
This caused a decrease in the efficiency of the spellchecker’s 
error detection module. A corpus which mostly contains obsolete 
words that are no longer used in the language can also reduce 
the accuracy of a spellchecker. The spellchecker might flag 
modern words which are correctly spelled as misspelled words 
[12]. 

                                                                 
4 http://language.worldofcomputing.net/linguistics/introduction/what-is-
corpus.html 

The Language Model (LM) utilized can also be affected by the 
corpus. With the usage of an n-gram LM to determine the best 
candidate corrections, a corpus that is too small or contains 
outdated or misspelled words may affect which candidate 
corrections are selected as suggestions. The n-gram statistics 
used in the LM model would be computed from the corpus and 
candidate corrections may receive an inaccurate higher or lower 
LM score [12, 14, 20]. 

The efficiency of error detection and correction in a 
spellchecker which uses a corpus can be increased by using 
multiple corpora. The combination of these corpora in the error 
and language model may however affect the accuracy of the 
spellchecker [12]. 

2.3 N-grams 
An N-gram is an n-letter subsequence of words or a string, 

where n is usually one, two or three and can sometimes equal 
four [9]. N-grams can be represented as character n-grams or 
word n-grams and form the dictionary of a spellchecker. 
Traditional dictionaries are represented by full lexicon words or 
words grams. Instead of storing word grams in a dictionary, a 
corpus can be split into character n-grams and these used as the 
dictionary of the spellchecker [8]. The use of character n-grams 
instead of word n-grams might improve the number of input 
words that a spellchecker identifies as correctly spelled words. 
This can, however cause misspelled words to be identified as 
correctly spelled [3, 8]. 

Error models use n-grams to predict whether a word is 
misspelled by comparing an input word against n-grams in the 
dictionary. With character n-grams, each n-gram in the input 
word is compared with n-grams stored in the dictionary. If any 
n-gram in an input word is not found in the dictionary, the word 
is flagged as misspelled [12]. 

Higher-order n-grams are more context-sensitive, but have 
sparse counts, while lower-order n-grams have higher counts, 
but are less context sensitive. [12, 15]. N-grams can also be used 
in an n-gram LM to determine the best candidate corrections by 
computing the n-gram statistics of each candidate correction. An 
N-gram statistic is the probability of an N-gram occurring in a 
text and is computed from how frequent an n-gram occurs in 
words from a corpus. Ndaba et al. [12] state that the efficiency of 
an n-gram model is dependent on the language used, finding that 
trigrams have a higher accuracy in detecting and correcting 
errors in their isiZulu spellchecker compared to quadrigrams. 

2.4 Damerau-Levenshtein distance 
The Damerau-Levenshtein distance (DL), also known as the 

minimum edit distance, is an algorithm used to calculate the 
minimum edit distance required to transform one word into 
another [1]. Edit distance is the number of insertion, deletion, 
substitution and/or transposition operations that will have to be 
performed on the misspelled word to acquire the correctly 
spelled word [12, 15]. DL can be used together with n-grams in 
an error model to identify a misspelled word. DL can also be 
used to find candidate corrections for the misspelled word [12]. 

http://language.worldofcomputing.net/linguistics/introduction/what-is-corpus.html
http://language.worldofcomputing.net/linguistics/introduction/what-is-corpus.html
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2.5 Statistical Approaches for Error Correction 
Appendix A1 details the various statistical methods used in 

developing existing spellcheckers. The table shows different 
techniques used by different spellcheckers and the accuracy they 
achieved in providing candidate corrections to misspelled words. 
The most efficient spellcheckers have an accuracy rate of 85% 
and above. All of these spellcheckers utilize n-grams in their 
models and most of them use Levenshtein distance (or its 
variation). It should also be noted that the size of a corpus affects 
the accuracy of a spellchecker, where corpora which are too big 
or small can cause the accuracy to be limited or reduced [3, 12, 
20]. The content of a corpus also affects the accuracy of a 
spellchecker, which can be noted from Whitelaw et al.’s [20] 
Gupta and Sharma’s [5] spellchecker. Whitelaw et al. uses the 
web as a corpus, which is filled with a large amount of correctly 
spelled as well as misspelled words. Because of this, their 
spellchecker only achieved an accuracy rate of 68%. Whitelaw et 
al. [20] used n-grams, Levenshtein distance and 7 confidence 
classifiers, constructed using the noisy channel model. Gupta 
and Sharma [5] also used n-grams and a Bayesian approach to 
construct their spellchecker. They achieved an accuracy rate of 
89.83%. The content of the corpora used contributed to achieving 
this high accuracy. 

It is difficult and would be inaccurate to compare all of the 
techniques together and decide which technique listed above is 
the best to utilize for the construction of all spellcheckers. This is 
due to the effects that the selected language(s) and corpora have 
on spellcheckers. However, it can be induced that using the 
Levenshtein distance (or its variation) and/or n-grams can help 
improve the accuracy level achieved by a spellchecker. 

2.6 Ranking Candidate Corrections 
After locating spelling errors in an input string, a 

spellchecker will offer suggestions for correcting the misspelled 
words [11]. Using the Levenshtein distance can help with the 
selection of the best candidate corrections by calculating the 
minimum edit distance for each candidate correction with the 
misspelled word and scoring the candidate corrections. 
Candidate corrections with higher edit operations are less 
favoured than candidate corrections with lower edit operations 
[6, 11]. 

A language model score can be used to select the best 
candidate correction(s). This is done by substituting the 
misspelled word with the candidate correction in the input 
string. n N-grams are then extracted, which have the candidate 
correction in all possible positions in the n-gram [6]. A score is 
assigned to each n-gram according to the frequency or the 
likelihood that an n-gram occurs in the corpus used. A score is 
then assigned to the candidate correction, which is equal to the 
average score of all n-grams. By using the language model score 
assigned to the candidate corrections, words that are more 
frequently used in the language will be favoured as the best 
candidate corrections as opposed to words that are less 
commonly used. This algorithm also helps with ranking 

candidate words that may have the same edit distance away 
from the misspelled word [6, 11, 14]. 

After the best candidate corrections are chosen, they are 
displayed as suggestions. In the case where no candidate 
corrections can be found, a “no suggestion” message can be 
displayed and an option to add the word to a list of exception 
words can also be provided by the spellchecker [12, 1]. 

3 SYSTEM DESIGN AND IMPLEMENTATION 
This section details the design and implementation of the 

techniques used to construct the error corrector. The system 
provides candidate corrections for words flagged as incorrect by 
the error detector developed by Ndaba et al. [12]. According to 
Damerau, 80% of spelling errors occur from a single substitution, 
insertion, deletion or transposition error in a word [18]. The 
error corrector will focus on non-word errors originating from a 
one-character change from the intended word. The design of the 
error corrector was implemented using the Java programming 
language. Java is a platform independent, portable, object 
oriented programming language that offers vast libraries to ease 
development. Java was used to develop the error detector and for 
integration purposes, the error corrector is also developed using 
this language. 

3.1 Corpus 
An isiZulu corpus was obtained from Dr. Langa Khumalo 

from the Language Department of the University of KwaZulu-
Natal. The corpus comprises of isiZulu articles and novels stored 
in text files. The corpus was cleaned by removing punctuation 
(excluding apostrophes and hyphens occurring in isiZulu) and 
non-isiZulu words occurring in the text files.  The text files were 
then used to construct trigrams. 

3.2 Trigram Construction 
A text file to store trigrams is created. A trigram is a group of 

three consecutive characters. Trigrams are constructed by taking 
each word in the corpus and using the following method to 
obtain the trigram constituents of a word: 

Starting from index position 0 of the given word: 
o Find the next three consecutive characters of the word 

from the index position to index + 2 and store them in the 
trigrams text file. 

o Increment the index by one. 
o Repeat the above steps until index = length of  
word - 3. 
Unique trigrams from the trigram text files are stored in a 

trigram list, which is used to calculate the various probabilities 
mentioned in section 3.3. 

3.3 Probabilities 
Once the trigrams are constructed, a list of unique trigrams 

occurring in the corpus is constructed. The frequency at which 
each trigram, occurs in the corpus is counted and stored in a text 
file together with the trigram from the trigram list. The 
frequencies are used in the search algorithm to determine the 
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probability of a trigram being correct if it occurs in the trigram 
list. Another set of probabilities calculated is the probability of a 
specific trigram occurring after its precedent trigram. These 
probabilities serve 2 purposes in the error corrector: to identify a 
correct trigram that does not belong in the given word and to 
determine the order of candidate corrections. 

3.4 Search Algorithm 
When a word from the input text is flagged as incorrect by 

the error detector, the word is broken up into its trigram 
constituents. The list of unique trigrams is then traversed to 
identify every incorrect trigram in the word. A HashMap is used 
to store the trigrams from the trigram list and their respective 
frequencies. Only trigrams with frequencies greater than the 
frequency threshold are stored in the HashMap. This improves 
the performance of the system, since file accesses only occur 
once when the program is initialized. An ArrayList is also 
created to store trigrams stored in the HashMap. This is done for 
easy traversal of all trigrams instead of using an Iterator on the 
HashMap. 

A trigram is viewed as incorrect if the trigram does not 
appear in the trigram list or if the trigram occurs in the list, but 
its frequency is below the assigned frequency threshold. Once a 
trigram is identified as incorrect, the Damerau-Levenshtein (DL) 
or minimum edit distance of the trigram and each unique 
trigram is calculated. The DL distance is the minimum number of 
operations that need to be performed in order to transform one 
string into another [12]. All the trigrams that yield an edit 
distance of 2 or lower are stored in an array. This method is 
repeated for each trigram that is identified as incorrect. 

DL is used to obtain candidate trigrams. The ArrayList is 
traversed and the DL distance of each incorrect trigram and each 
unique trigram is calculated. All trigrams from the ArrayList that 
yield an edit distance of two or lower are stored in an ArrayList. 
This method is repeated for each trigram that is identified as 
incorrect. 

3.5 Storing Candidate Trigrams 
The ArrayList containing candidate trigrams needs to be 

stored together with the incorrect trigram. This is achieved by 
creating a Trigram object. The Trigram object consists of an 
ArrayList to store candidate corrections and a String variable to 
store the incorrect trigram. A Trigram object is created for each 
trigram of the incorrect word and stored in a Trigram ArrayList. 
Trigrams that are viewed as correct contain an empty 
suggestions ArrayList. 

3.6 Candidate Corrections Algorithm 
Once all the incorrect trigrams are identified and candidate 

trigrams are obtained by the search algorithm, the trigrams are 
joined to form possible isiZulu words to display as candidate 
corrections to the user. The candidate corrections are formed 
using a brute force algorithm, where possible combinations of 
candidate trigrams stored in ArrayLists are computed using 
string manipulation. These combinations are also combined with 

the correctly spelt trigrams of the flagged word to form 
candidate corrections.  

Due to the computational intensity of the algorithm, the 
ArrayLists containing candidate trigrams are ordered and the 
BinarySearch Algorithm is used to determine the start and end 
indices to perform combinations on. The BinarySearch algorithm 
determines the first and last strings in the ArrayList where a 
combination between two strings is possible. This is done to 
improve on the running time of the algorithm. By using 
BinarySearch, the complexity is improved from O(n2) to 
O(nlogn).  

Due to the agglutinative nature of isiZulu, some of the 
candidate corrections obtained from this algorithm might be 
non-existent in the isiZulu language. To mitigate this, the list of 
unique words from the corpus is traversed. All candidate 
corrections that do not occur in this list are discarded. To further 
improve on performance, all unique words occurring in the word 
list are stored in a HashSet for quick access. 

3.7 Optimization of Error Corrector 
Two techniques are utilized to further improve on the 

performance of the error corrector in finding candidate 
corrections. The first technique, which is a novel technique, is to 
check if the error that occurred is a transposition error. This is 
done by checking if the trigram contains 2 adjacent consonants. 
If there are 2 adjacent consonants, the consonants are swapped 
and the HashMap containing the unique trigram is checked to 
see if the trigram exists. If it does exist, string manipulation is 
used to formulate a new word containing the trigram with the 
swapped adjacent consonants. The HashSet containing unique 
words is checked to see if the new word is a correct isiZulu 
word. If it is correct, the word is displayed as a candidate 
correction and the suggestions algorithm is terminated for this 
word. This drastically optimizes the performance of the error 
corrector, since candidate corrections do not need to be searched 
for if the new word is found to be correct. 

Probabilities are used in the second method to improve on the 
accuracy of the error corrector in finding candidate corrections. 
Due to the agglutinative nature of isiZulu, a trigram can be 
viewed as correct by the error detector, but it is incorrect in the 
given word. When obtaining candidate corrections through 
string manipulation, the correct trigram is joined to the 
candidate trigram to form a new string. If the trigram occurring 
before the incorrect trigram does not belong in the word and the 
previous trigram is recognized as correct, the intended word will 
not appear as a candidate correction. To mitigate this, the 
probabilities of trigram occurring after a specific trigram is 
calculated. This is done by traversing through the corpus, where 
every word is in its trigram form, and calculating the frequency 
of the trigrams occurring next to each other in a given word. 
This is done for all combinations of unique trigrams that have a 
frequency >= 35 that can be combined to form a new string. 
These probabilities are stored in a text file, where they are 
accessed and stored in a HashMap when the system is initialised. 
The trigram is used as a key and a TriNext object is stored as the 
value. The TriNext object contains an ArrayList with all possible 
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trigrams that can occur next as well as a HashMap containing 
the probabilities of these trigrams. 

When a trigram is viewed as correct, if the trigram is not the 
first trigram of the word, the HashMap containing the 
probabilitiees of the trigram occurring next after the previous 
trigram is accessed to see if the previous trigram is stored as a 
key. If the previous trigram is stored, the ArrayList containing 
the possible trigrams that can occur next is set as the suggestions 
ArrayList for this trigram. 

3.8 Ordering of candidate corrections 
In order to show the most relevant suggestions to users, 

candidate corrections are ordered according to their probability 
score in the following manner: 

• Each candidate correction is broken up into its trigram 
constituents and stored in an ArrayList. 

• For each trigram (excluding the trigram occurring at 
index 0), the probability of the trigram occurring after the 
previous trigram is obtained. 

• The probabilities are summed up and divided by the 
total number of trigrams. The sum is stored in a HashMap with 
the candidate correction as the key. 

• The candidate corrections are then sorted according to 
their probability score and at most 10 suggestions are displayed 
to the user. 

• Figure 1 depicts candidate corrections provided by the 
system. 

 

4 EXPERIMENT DESIGN AND EXECUTION 
This section details the experiment design and execution 

followed to determine the performance of the spell checker 
based on different evaluation metrics.  

 

4.1 Dataset 

The corpora provided by Dr. Khumalo was used for training 
the system and an isiZulu wordlist (“correct.txt”) obtained from 
Norman Pilusa’s GitHub account5 was used as the testing dataset 
to test the spell checker. We assume that each word in the 
wordlist is correctly spelled. Four text files (“substitutions.txt”, 
“transpositions.txt”, “insertions.txt” and “deletions.txt”) were 
created to store spelling errors according to the type of nonword 
error occurring. 6000 words from the wordlist were fed to an 
error generating module6  to generate the various nonword 
spelling errors. The module takes each word and randomly 
injects a spelling error into the word and then stores the word in 
the appropriate text file according to the spelling error that was 
injected. Each text file contains 1500 incorrectly spelled words. 

This method is used to create spelling errors as no resource 
containing common misspellings occurring in isiZulu could be 
found. 

4.2 Evaluation Metrics 
According to van Huyssteen et al [a], spellcheckers should 

have a high proficiency of the language, in terms of flagging 
very few correctly spelled words as incorrectly spelled. Ideally 
the spell checker should flag all incorrectly spelled words and 
provide candidate corrections to these words as well as 
recognize all correctly spelled words in a given text. In this 
section, we will look at the evaluation metrics that will be used 
to evaluate the performance of the system.  

4.2.1 Confusion Matrix 
A confusion matrix (figure 2) is used to classify the results 

into 4 categories: True Positives (TP), True Negatives (TN), False 
Negatives (FN) and False Positives (FP). TP denotes the number 
of words that are known to be correctly spelled that the system 
recognizes as correctly spelled. TN are the number of correctly 
spelled words that the system flags as incorrect. FP denotes the 
number of incorrectly spelled words that the system flags as 

incorrectly spelled. FN are the number of incorrectly spelled 
words that the system recognizes as correctly spelled [12]. 

4.2.2 Recall Measures 

                                                                 
5 https://github.com/normanpilusa/Isizulu_Spellchecker/blob/master/correct.txt 
6https://github.com/benjholla/spellwrecker/blob/master/SpellWrecker/src/spellwrec
ker/components/spellwreckers/QwertySpellWrecker.java 

 
 Recognized as 

Correctly 
Spelled 

Flagged as 
incorrectly 
spelled 

Correctly 
spelled word 

TP FN 

Incorrectly 
spelled word 

FP TN 

Figure 2: Confusion Matrix 

 

 
Incorrect word Candidate Corrections 
                      Substitution 
wasemausa 
esedazuljka  

wase, waso 
esedazuluka 

                     Transposition 
bezibguza 
ngewzindlela  

bezibuza  
ngesizini, ngethi, ngenze, ngenza 

                          Insertion 
zigqamia 
ungasagcwli  

zigqamisa  
ungasho, ungase, unga 

                          Deletion 
ephephandabeni  
uhpakanyiswe 

ephephandabeni, ephephandaba, ephe 
uphakanyiswe 

Figure 1: Candidate corrections for incorrectly spelled 
words 
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 Recall measurements are used to denote how representative 
the lexicon of the spellchecker is of the language as well as how 
free is the lexicon used of incorrectly spelled words [a]. In order 
to determine how representative the corpus is of the isiZulu 
language, the lexical recall (LR) of the spellchecker is calculated. 
LR is the number of correctly spelled words that are recognized 
as correct by the spell checker (TP) in relation to the total 
number of correctly spelled words in the text (TP + FN) [a, b]. LR 
is calculated as follows: 

𝐿𝑅 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

To determine how error-free the corpus is, we calculate the 
Error Recall (ER) of the spell checker. ER is the number of 
incorrectly spelled words flagged by the spell checker (TN) in 
relation to the total number of incorrectly spelled words (TN + 
FP) [a, b]. This is calculated using the following equation: 

𝐸𝑅 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

4.2.3 Precision Measures 
Precision measures are used to denote how accurate the spell 

checker is at recognizing correctly spelled words (lexical 
precision (LP)) and flagging incorrectly spelled words (error 
precision (EP)) [a]. LP and EP calculated using the following 
equations: 

𝐿𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 𝐸𝑃 =  

𝑇𝑁

𝐹𝑁+𝑇𝑁
 

4.2.4 Suggestion Adequacy and Accuracy 
Suggestion Adequacy (SA) denotes the ability of the spell 

checker to provide accurate suggestions that are relevant to the 
user [a]. Accuracy (𝐶𝑠) is represented by the number of TN that 
the error model was able to provide candidate corrections to. 
This however, does not determine the relevance (𝐶𝑣) of the 
suggestions. In order to determine the SA of the error model, the 
𝐶𝑣 of the suggestions is calculated. 𝐶𝑣 is represented by the 
number of corrections provided for TN that contain the intended 
word that was incorrectly spelled. 

𝐶𝑠 is determined by the number of words that obtained 
suggestions from the error model. In order to determine 𝐶𝑣, a 
scoring system is used based on the combination of scoring 
systems used by Paggio and Underwood [c] and Van Zaanen and 
Van Huyssteen [d]. The scoring system is as follows: 

• If the suggestions contain the intended word:  
𝐶𝑣 = 1 

• If the suggestions do not contain the word: 𝐶𝑣 = 0.5 
• If no suggestions provided: correct suggestion = 0 

This scoring system is performed on each word and the total 
sum for all TN determines 𝐶𝑣 . To get the percentage for 
accuracy and relevance, 𝐶𝑣 and 𝐶𝑠 are divided by TN. 

4.3 Design 
The error detector uses a separate set of unique trigrams and 

wordlist from the error corrector to perform error detection on 
input text. Since the corpus utilized affects the performance of 

the spell checker, the experiment began by testing which set of 
unique trigrams and wordlist will provide better performance. 
The system was tested using correctly spelled words stored in a 
text file (“Accuracy.txt”). The set that yielded the highest TP 
values was utilized for both error correction and error detection. 
Once the trigramlist and wordlist was determined, the frequency 
threshold (TF) for the system was determined. 

TF is defined as the minimum frequency that a trigram can 
occur in a corpus to be used in the system. Frequency denotes 
the number of times a trigram occurs in a corpus. The TF of the 
system was determined first by feeding the system with 1895 
incorrectly spelled words stored in a text file (“threshold.txt”). 
The file was iteratively tested using different TF values in each 
iteration. The TN, FP, 𝐶𝑠 and 𝐶𝑣 values were recorded for each 
iteration. The TF value that yielded the best results was utilized 
for the remainder of the experiment.  

After testing for the threshold frequency, the performance of 
the system was tested with and without the use of 𝐶𝑣 
optimization probabilities discussed in section 3.4. 

In order to determine the performance of the system for each 
type of spelling error, each text file containing the various 
spelling errors was divided into three sections, with each section 
containing 500 words. This is done to ascertain that the system 
provides consistent results for each type of spelling error across 
all phases. Each section was fed to the system and the resulting 
TN, FP, 𝐶𝑠 and 𝐶𝑣 values were stored. This method was repeated 
for each type of spelling error. Finally, the system was tested 
using the testing dataset containing correctly spelled words. The 
resulting TP and FP values were used together with the 
cumulative TN and FN values to generate a confusion matrix. 
The confusion matrix together with the cumulative 𝐶𝑣 and 𝐶𝑠 
values were used to measure the recall, precision, accuracy and 
SA of the system to determine the accuracy of the spellchecker. 
The accuracy of the spellchecker is determined using the 
following hypothesis in section 4.4. 

4.4 Hypotheses 
The following hypotheses are used to determine if the 

spellchecker is successful at detecting and correcting nonword 
spelling errors in isiZulu: 

• Hypothesis 1: The system achieves an LR rate >= 85% 
• Hypothesis 2: The system achieves an ER rate >= 80% 
• Hypothesis 3: The system achieves an LP and EP rate 

>=85% 
• Hypothesis 4: The system achieves an accuracy rate >= 

85% 
• Hypothesis 5: The system achieves an overall 

suggestion rate >= 60% 

5. RESULTS AND DISCUSSION 
This section describes the results obtained from the 

experiment. Bar graphs and a confusion matrix are used to 
analyze the results.  
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5.1 Corpus and Threshold 
Table 1(a) contains the results obtained from testing which 

trigram and word list yielded the highest TP value. 
 

Table 1(a): TP and FP results for trigram and word lists 

 

TP FN Accuracy 

Trigram and word 
list from error 

detector module 

10328 2125 83% 

Trigram and 
wordlist from error 
corrector module 

10566 1887 85% 

 
From the results obtained in table 1, the error detector has a 

higher accuracy when the trigram and word list used to develop 
the error corrector is used. Therefore, the error corrector and 
error detector will utilize the same trigram and word list. 

Table 1(b) shows the results after testing the system with 
different TF values. The results show that a higher TF values 
yield higher TP values and lower FP values. Although though TP 
values for TF > 45 increase and FP values decrease, the  
𝐶𝑣 values for TF > 45 decrease significantly as T F increases, 
while TF <= 45 does not alter the 𝐶𝑣  value significantly. 
Therefore, the chosen TF that will be used to determine if a 
trigram is correct is 45. This will be the TF used to evaluate the 
system. 
 

Table 1(b): threshold results using “threshold.txt” 

TF 

TP FN 𝑪𝒔 𝑪𝒗 

35 1584 311 1392 957 

40 1599 296 1412 956 

45 1608 287 1420 957 

50 1615 280 1423 938 

55 1625 270 1435 936 

60 1633 262 1440 916 

 

5.2 Alternatives 
Table 2 denotes the performance of the system with and without 
the use of optimization probabilities discussed in section 3.7. 
 
 
 
 

 
Table 2: performance system with and without optimization 

probabilities 
 TN FP 𝑪𝒔 𝑪𝒗 

Without 
probabilities 

1608 287 1420 957 

With 
probabilities 

1608 287 1530 1014 

 
The system performance in terms of accuracy and relevance 

increases significantly when the optimization probabilities are 
utilized. This proves that using the optimization probabilities 
improves the overall accuracy and relevance of the error 
corrector. 

5.3 Nonword Error Performance Evaluation 
The following results were obtained for each type of spelling 

error. 

5.3.1 Substitutions 

The results obtained for each phase of testing for substitution 
errors are listed below. 
 

Table 3: substitution results 
 
Phase 

TN FP 𝑪𝒔 𝑪𝒗 

1 398 102 366 240 

2 401 99 376 235 

3  415 85 381 243 

Tota
l 

121
4 

286 1123 718 

 
From the 1500 incorrectly spelled words with a substitution 

error, 1214 words were flagged as incorrectly spelled and 286 
words were recognized as correctly spelled. For each phase of 
testing, the spell checker provided corrections to over 90% of TN, 
with an average of 92% for accuracy. The 𝐶𝑣 values obtained 
were not significantly lower than the 𝐶𝑠 values, with an average 
difference of approximately 135 candidate corrections not 
containing the intended word. 
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5.3.2 Insertions 

Table 4 depicts results obtained for insertion errors. 
 

Table 4: insertion results 

Phase 

TN FP 𝑪𝒔 𝑪𝒗 

1 480 20 453 153 

2 481 19 457 136 

3  487 13 459 145 

Tota
l 

144
8 

52 1369 434 

 
For insertion errors, the spellchecker was able to significantly 

detect incorrectly spelled words, yielding very low FN values for 
each phase of testing. From the flagged words, the spell checker 
achieved a high accuracy rate for each phase with an average 
accuracy rate of 95%. 𝐶𝑣 was, however, significantly low for 
each phase. This low 𝐶𝑣 rate could be caused from the extra 
trigram created when a character is erroneously injected into a 
word. The error corrector does not exclude this trigram when 
providing candidate corrections and this might be the 
contributing factor to the low 𝐶𝑣 values obtained. 

5.3.3 Deletions 

The 𝐶𝑠 results obtained for deletion errors are similar to 
those achieved by the spellchecker for substitution and deletion 
errors, with an average of 90% of TN being provided candidate 
corrections. The TN values for each phase are however much 
lower and the FP values increase significantly.  

 
Table 5: deletion results 

 
Phase 

 TN FP 𝑪𝒔 𝑪𝒗 

1   332 168 320 232 

2  321 179 310 232 

3  296 204 227 229 

Tota
l 

 949 551 857 693 

 
The low TN and high FP values indicate that when a 

character is omitted from a word, the trigram constituents of the 
incorrect word have a high enough frequency that they are all 
recognized as correct by the error detector. The TN and FP 
values are an indication that the threshold frequency is too low 
for deletion errors. This could also indicate that a much larger 
corpus is required for the spell checker. 

 

5.1.4 Transpositions 

Looking at table 6, the spell checker’s performance for 
transposition errors is the best from all the spelling errors. All 
TN, 𝐶𝑠 and 𝐶𝑣 values are significantly high and all FP values are 
significantly low. 

 
Table 6: transposition results 

 
Phase 

TN FP 𝑪𝒔 𝑪𝒗 

1 479 21 472 424 

2 481 19 476 433 

3  484 16 478 433 

Tota
l 

144
4 

56 142
6 

1290 

 
The spell checker’s high performance in correcting 

transposition errors results from the optimization method for 
transposition errors, stated in section 3.7. Taking phase 1 and 
running the spell checker without the optimization method 
yields the following results in table 7 

 
Table 7: Phase 1 performance with and without optimization 

method for transposition errors 
 TN FP 𝑪𝒔 𝑪𝒗 

Optimized 479 21 472 424 

Not Optimized 479 21 452 215 

 
The results from table 7 shows that 𝐶𝑠 marginally decreases. 

However, there is a significant decrease in the 𝐶𝑣 value obtained 
without the use of the optimization method. 

5.4.5 Cumulative results 

This section details the cumulative performance results for 
each spelling error. Figure 3 denotes the comparison of the 
spelling errors according to TN, FP, 𝐶𝑠 and 𝐶𝑣 values. 

 
Table 8: cumulative results for all spelling errors 
 
Phase 

TN FP 𝑪𝒔 𝑪𝒗 

Substitutions 1214 286 1123 718 

Insertions 1448 52 1369 434 

Deletions  949 551 857 693 
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Transpositions 1444 56 1426 1290 

Total 5055 945 4775 3135 

 
Table 8 shows the overall performance of the system. From 

the cumulative results, it can be seen that the error detector is 
able to detect transposition, substitution and insertion errors 
adequately. The system, however, does not achieve the same 
level of error detection for deletion errors. The system is also 
able to adequately provide candidate corrections for all spelling 
errors. When it comes to the intended word being a part of the 
provided candidate corrections, the system has a low 𝐶𝑣 value 
for insertion errors compared to the other spelling errors. Refer 
to figure 3 for a visual depiction of the results from table 8. 

 

 

Figure 3: Column chart representing cumulative results 
for each spelling error 

Overall, the system performs adequately at detecting and 
correcting nonword errors. In order for a spell checker to be 
successful, the system needs to be able to recognize correctly 
spelled words as correct. To evaluate this, we take a look at the 
system’s performance when it is fed with a text file containing 
the correct words used to generate the nonword spelling errors. 

5.5 System performance using correctly spelled 
words 

Figure 4 denotes the results for TP, FN, 𝐶𝑠 and 𝐶𝑣 obtained 
from running the spell checker using the 6000 correctly spelled 
words that were used for generating spelling errors. 

 

 

Figure 4: Column chart representing cumulative results 
for each spelling error 

Figure 4 shows that the TP values are significantly higher 
than the FN values. From the 6000 words, the system was able to 
recognize 5341 words (89%) as correctly spelled. This shows that 
the system can adequately recognize correctly spelled words. 

5.6 Recall and Precision Measures 
Figure 5 denotes the confusion matrix containing the overall 

TN, FN, TP and TN values. TN and FP values are obtained from 
table 7, and the TP and FN values are obtained from figure 4. 

The confusion matrix from figure 5 is used to calculate the 
recall and precision measures of the system.  

5.6.1 Recall Measures 

Using the equation from section 4.2.2 and the confusion 
matrix, the following results are obtained for LR and ER: 

 

𝐿𝑅 =  89% and 𝐸𝑅 =  84% 

 
The result for LR proves that the system is representative of 

the isiZulu language. Hypothesis 1 is proven to be correct. 
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Hypothesis 2 is also proven to be true, with ER >= 80%. This 
shows that the corpus used for the system is adequately free of 
errors. 

5.6.2 Precision Measures 

Using the equation from section 4.2.3 and the confusion 
matrix, the following results are obtained for LR and ER: 

 

𝐿𝑃 =  85% and 𝐸𝑃 =  88% 

 
The LP and EP values shows that the error detector is can 

recognize correctly spelled and flag incorrectly spelled words. 
Thus, hypothesis 3 is proven to be correct. 

 

5.7 Suggestion Adequacy and Accuracy 
Measures 

This section focuses on the suggestion adequacy and 
accuracy of the error corrector for each type of spelling error. 
The overall suggestion adequacy and accuracy is also discussed 
in this section.  

Table 9 depicts the accuracy results for each spelling error 
using the overall Cs and TN values for each type of spelling 
error. 

 
Table 9: Accuracy results for each spelling error 

 𝑪𝒔 TN 
 

Percentage 
(%) 

Substitutions 1123 1214 93 

Insertions 1369 1448 95 

Deletions  857 949 90 

Transpositions 1426 1444 99 

Total 4775 5055 94 

 
The error corrector achieves an accuracy rate above 90% for 

each type of spelling error. The overall accuracy of the system is 
94%. This is an accuracy rate well above the expected accuracy 
rate of 85%, proving hypothesis 4 to be correct. 

Table 10 depicts the relevance results for each type of 
spelling error as well as the combined relevance result. 

 
Table 10: Relevance results for each spelling error 
 𝑪𝒗 TN Percentage 

(%) 

Substitutions 718 1214 59 

Insertions 434 1448 30 

Deletions  693 949 73 

Transpositions 1290 1444 89 

Total 313
5 

5055 62 

 
For deletion errors, the system falls short in providing 

corrections with the intended word as part of the candidate 
corrections. The system achieves a relevance rate of only 30%. 
Although the relevance rate for deletion errors is 30%, the 
system achieves an overall relevance rate of 62%, which is 
greater than the expected rate of 65%. Therefore, hypothesis 5 is 
proven to be true. For a visual representation of the accuracy 
and relevance rates achieved, refer to figure 6(a) and 6(b) in 
Appendix A2. 

6. CONCLUSIONS 
Error detection and correction are important spell checking 

aspects. In order for a spellchecker to be viewed as successful, it 
should be representative of the language it is correcting, it’s 
corpus or dictionary should be free of errors and it should be 
able to recognize correctly spelled words and flag incorrectly 
spelled words at a high accuracy rate. On top of this, the 
spellchecker should be able to provide candidate corrections for 
words that are flagged as incorrect using an error corrector. For 
error correction to be viewed as successful, the error corrector 
should be able to provide accurate and relevant suggestions to a 
user [a].  

In this paper, we implemented a statistical approach to 
finding candidate corrections for isiZulu, which is the most 
widely spoke languages in South Africa. An isiZulu spellchecker 
that can only perform error detection was used. The isiZulu 
language was chosen, since it is the only Bantu language with a 
standalone error detector. This error corrector is the first step 
towards providing error correction for more Nguni languages. 
The error corrector was developed and integrated with the error 
detector. The experiment was then performed on the complete 
system. The system achieved a language recall rate of 89%, an 
error recall of 84%, a language precision of 85% and an error 
precision of 88%. The error corrector was found to have an 
accuracy rate of 94%, which is well above the expected accuracy 
rate of 85%. The suggestion adequacy of the system was found to 
be 62%, which is also above the expected value of 60%. From the 
following results, the spell checker is found to be successful at 
detecting and correcting spelling errors. 

7. FUTURE WORKS 
This error corrector sets the first step towards achieving an 

isiZulu spellchecker that can provide users with accurate and 
relevant error correction. The error corrector performs expertly 
at providing relevant candidate corrections for transposition 
errors and it can adequately provide relevant candidate 
corrections for substitution and insertion errors. The system 
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however falls short when it comes to deletion errors. A method 
to improve on the suggestion adequacy for deletion errors can be 
a future addition to the spellchecker. The size of the corpus and 
how error-free it is also plays a role in the overall performance 
of the system. Looking at the effects of the corpus on the 
performance of the system and implementing a larger corpus can 
be looked at in future. Presently, the spell checker cannot 
provide real-time error detection and autocorrection to the user. 
This is another feature that can be implemented in future works. 

APPENDIX A 
 

A1 Table showing the language, corpora and 
techniques used to develop existing 
spellcheckers and how they performed 
overall 

 

 
Langua

ge 
Corpora 

Techniqu
e(s) 

Performance 

Ndaba 
et al. 
[12] 

isiZulu 

Ukwabel
ana 

Corpus 
(UC); 

selection 
of isiZulu 
National 
Corpus 
(INC); 
small 

corpus of 
news 
items 
(NIC) 

trigrams 
and 

quadrigra
ms and n-
gram LM 

INC 
67% 

accurac
y rate 

NIC 
76% 

accurac
y rate 

UC 

Above 
50% 

accurac
y rate 

Whitela
w et al. 

[20] 

English 
and 

Germa
n 

Large 
corpus of 
crawled 
public 
web 

pages 

Substring 
error 

model, n-
gram LM, 
Confidenc

e 
classifiers 
(construct
ed using 

noisy 
channel 
model), 

Englis
h 

Total 
error 

rate for 
best 

system 
= 2.62% 

 
Suggesti
on rate 
= 10% 

Germ
an 

Correcti
on error 
rate = 
7.89% 

 
Total 
error 
rate = 
9.8% 

Samant
a and 

Chaudh
uri [15] 

English 

BYU 
corpus, 
bigram 

and 
trigram, 

text from 
Project 

Gutenber
g 

Confusio
n set 

construct
ed from 

Levenshte
in 

distance, 
bigram 

and 
trigram 
model, 

stemming 

85% accuracy rate 
for top-ranked 

suggestions, 93% 
for top 2 ranked 

suggestions 

Schryve
r and 

Prinsloo 
[3] 

isiZulu 

isiZulu 
Bona 

magazine
, April 
2003 

N-grams 
and 

Levenshte
in 

distance 

68% accuracy 

Gupta 
and 

Sharma 
[5]  

English 

Brown 
corpus 

and set of 
commonl

y 
confused 

words 

Trigrams 
and 

Bayesian 
approach 

89.83% accuracy 

 

 

A2 Column graphs depicting the cumulative 
results for each spelling error. 

 

 

 

 

Figure 6 (a): Column chart representing cumulative results 
for each spelling error 
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Figure 6 (b): Column chart representing cumulative results 
for each spelling error 
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