

Computer Science Honours
Final Paper

2017

Title: A Statistical Approach to Error Correction for an isiZulu
Spellchecker

Author: Frida Mjaria

Project Abbreviation: ALSPEL

Supervisor(s): Maria Keet

Category Min Max Chosen
Requirement Analysis and Design 0 20 0
Theoretical Analysis 0 25 0
Experiment Design and Execution 0 20 20
System Development and Implementation 0 15 10
Results, Findings and Conclusion 10 20 20
Aim Formulation and Background Work 10 15 10
Quality of Paper Writing and Presentation 10 10
Quality of Deliverables 10 10
Overall General Project Evaluation (this section allowed only with motivation letter from supervisor) 0 10
Total marks 80 80

https://docs.google.com/document/d/1YawEBX7RjPVTd8Zk0tqs4FFp1-S1_H-zNmo_-MNTK7I/edit#heading=h.30j0zll

2

A Statistical Approach to Error Correction for an isiZulu
Spellchecker

Frida Mjaria
Department of Computer Science

University of Cape Town
fmjaria@gmail.com

ABSTRACT
Spellcheckers have become significantly important with the

increase of text-based communication. There is however, very
little support provided for spell checking in Nguni languages, of
which two (isiZulu and isiXhosa) are the most spoken languages
in South Africa. The aim of this research paper is to improve on
spell checking for the Nguni language, isiZulu, by providing an
error corrector that can accurately provide candidate corrections
to misspelled isiZulu words using a statistical approach. The
error corrector is then integrated with the isiZulu error detector
developed by Ndaba et al. [12] and implemented by Norman
Pilusa.

This paper focusses on non-word error correction. Trigrams,
minimum edit distance and probabilities of trigrams based on
occurrence in corpus are used to construct the error corrector.
The error corrector is tested on 6 000 auto-generated isiZulu
spelling errors. These errors represent the 4 types of non-word
errors that occur (substitution, insertions, deletions and
transpositions). The performance of the error corrector is tested
using confusion matrices.

The experiment in section 4.3 was then performed on the
whole system utilizing the auto-generated spelling errors. The
system achieved a language recall rate of 89%, an error recall of
84%, a language precision of 85% and an error precision of 88%.
The error corrector was found to have an accuracy rate of 94%,
which is well above the expected accuracy rate of 85%. The
suggestion adequacy of the system was found to be 62%, which is
also above the expected value of 60%. From the following results,
the spell checker is found to be successful at detecting and
correcting spelling errors using a statistical error model.

1 INTRODUCTION

The Bantu languages spoken in South Africa can be

categorized under 2 branches - the Sotho-Tswana branch,
comprising of Sesotho, Sesotho sa Leboa (Northern Sotho) and
Setswana, and the Nguni branch, which comprises of isiZulu,
isiXhosa, isiNdebele and siSwati. From the Nguni languages,
isiZulu is the most widely spoken language in South Africa with
22.7% of the population speaking isiZulu as a first/home
language, followed by isiXhosa at 16%, whereas only 9.6% of

South Africans identify with English as their first/home
language1. Although isiZulu is more widely spoken than English,
there is currently not enough support provided for spelling error
detection and correction. Two spellcheckers currently exist for
isiZulu. One was developed by Ndaba et al. [12] and
implemented by Norman Pilusa 2 and the other by
spellchecker.net3. The former uses data-driven statistical models
and n-grams and can only detect misspelled words. According to
Ndaba et al. [12], the spellchecker has an accuracy rate of 89%.
The latter can detect and correct misspelled words. The
methodology and accuracy of this spellchecker is, however, not
disclosed.

The aim of this paper is to improve on spellchecking for the
isiZulu language by developing an error corrector that can
accurately provide candidate corrections to incorrectly spelled
isiZulu words in a given input text. This error corrector is
integrated with Ndaba et al.’s error detector to form a fully
functional isiZulu spellchecker. Accuracy of the error corrector
is measured by the number of words detected to be incorrect by
the error detector, that the error corrector can provide candidate
corrections to.

A large amount of text is generated online on a daily basis
that is informal and unedited by nature, requiring spelling error
detection and correction [4, 9, 15]. Spellcheckers aim to detect
two types of spelling errors that occur – non-word and real
world (or context-based) spelling errors. Non-words errors are
words that do not occur in a given language. These errors are
usually caused by typographical errors made by the user when
typing or by spelling a given word according to its
pronunciation (phonetical errors). There are 4 types of non-word
errors, viz. substitutions, insertions, deletions and transpositions
[15]. Substitution is when a letter in a word is replaced with
another, insertion is when a letter is added to a word, deletion is
when a letter is omitted from a word and transposition is when a
swap occurs between 2 adjacent letters in a given word [1, 6].

While non-word errors are categorized as non-existent words
in a language, real-word errors denote words that are correctly
spelled, but are used in the wrong context within a sentence [12,
17].

1 Nguni on Britannica Academic: 2017.
http://academic.eb.com/levels/collegiate/article/55655. Accessed: 2017- 05- 08
2 https://github.com/normanpilusa/Isizulu_Spellchecker
3 https://www.spellchecker.net/africa_zulu_spell_checker.html

mailto:fmjaria@gmail.com

2

This paper presents a method for creating an isiZulu spelling
error corrector for non-word errors using a statistical approach.
The error corrector utilizes probabilities and trigrams to produce
corrections for input words that are flagged as incorrect spelled.

The paper consists of the following sections: related work,
system design and implementation, experiment design and
execution, results and discussion, conclusions and future works.
Related work highlights the different statistical methods and
components that have been used to construct existing spell
checkers; system design and implementation details the methods
and components used to develop the error corrector; experiment
design and execution details the design of the experiment and
how it was executed. This section also lists the evaluation
metrics and hypotheses used to determine the success of the
experiment. The results and discussion section highlights the
results obtained from the experiment and what they indicate.
The paper concludes with the conclusions and future works
sections, which highlight the accuracy of the error corrector and
the system as a whole and what can be done in future for
spellchecking in isiZulu,

2 RELATED WORK
This section looks at the components of a spellchecker as well

as n-grams and the minimum edit distance and their uses in
developing spell checkers. This section also looks at various spell
checkers that have been developed using a statistical approach.

2.1 Components of a spell checker
A spellchecker has the following 3 components - a body of

text representing the language (corpus), an Error model (EM)
and a Language model (LM) [14]. An LM in a spellchecker is
used to determine how frequent a word occurs in a dictionary. A
corpus can be used to build an LM [6]. An EM is an algorithm
used for modelling spelling errors [14].

2.2 Corpus
A corpus is a collection of written texts used for linguistic

analysis4. The efficiency of the error model of a spellchecker is
affected by the corpus used. A corpus can contain misspelled
words, which may cause spellcheckers to identify misspelled
words in an input string as correctly spelled and this may affect
the accuracy rate of the spellchecker. For instance, [20] used the
World Wide Web as a large noisy corpus without any human
tweaking of the corpus, which included many misspelled words.
This caused a decrease in the efficiency of the spellchecker’s
error detection module. A corpus which mostly contains obsolete
words that are no longer used in the language can also reduce
the accuracy of a spellchecker. The spellchecker might flag
modern words which are correctly spelled as misspelled words
[12].

4 http://language.worldofcomputing.net/linguistics/introduction/what-is-
corpus.html

The Language Model (LM) utilized can also be affected by the
corpus. With the usage of an n-gram LM to determine the best
candidate corrections, a corpus that is too small or contains
outdated or misspelled words may affect which candidate
corrections are selected as suggestions. The n-gram statistics
used in the LM model would be computed from the corpus and
candidate corrections may receive an inaccurate higher or lower
LM score [12, 14, 20].

The efficiency of error detection and correction in a
spellchecker which uses a corpus can be increased by using
multiple corpora. The combination of these corpora in the error
and language model may however affect the accuracy of the
spellchecker [12].

2.3 N-grams
An N-gram is an n-letter subsequence of words or a string,

where n is usually one, two or three and can sometimes equal
four [9]. N-grams can be represented as character n-grams or
word n-grams and form the dictionary of a spellchecker.
Traditional dictionaries are represented by full lexicon words or
words grams. Instead of storing word grams in a dictionary, a
corpus can be split into character n-grams and these used as the
dictionary of the spellchecker [8]. The use of character n-grams
instead of word n-grams might improve the number of input
words that a spellchecker identifies as correctly spelled words.
This can, however cause misspelled words to be identified as
correctly spelled [3, 8].

Error models use n-grams to predict whether a word is
misspelled by comparing an input word against n-grams in the
dictionary. With character n-grams, each n-gram in the input
word is compared with n-grams stored in the dictionary. If any
n-gram in an input word is not found in the dictionary, the word
is flagged as misspelled [12].

Higher-order n-grams are more context-sensitive, but have
sparse counts, while lower-order n-grams have higher counts,
but are less context sensitive. [12, 15]. N-grams can also be used
in an n-gram LM to determine the best candidate corrections by
computing the n-gram statistics of each candidate correction. An
N-gram statistic is the probability of an N-gram occurring in a
text and is computed from how frequent an n-gram occurs in
words from a corpus. Ndaba et al. [12] state that the efficiency of
an n-gram model is dependent on the language used, finding that
trigrams have a higher accuracy in detecting and correcting
errors in their isiZulu spellchecker compared to quadrigrams.

2.4 Damerau-Levenshtein distance
The Damerau-Levenshtein distance (DL), also known as the

minimum edit distance, is an algorithm used to calculate the
minimum edit distance required to transform one word into
another [1]. Edit distance is the number of insertion, deletion,
substitution and/or transposition operations that will have to be
performed on the misspelled word to acquire the correctly
spelled word [12, 15]. DL can be used together with n-grams in
an error model to identify a misspelled word. DL can also be
used to find candidate corrections for the misspelled word [12].

http://language.worldofcomputing.net/linguistics/introduction/what-is-corpus.html
http://language.worldofcomputing.net/linguistics/introduction/what-is-corpus.html

 3

2.5 Statistical Approaches for Error Correction
Appendix A1 details the various statistical methods used in

developing existing spellcheckers. The table shows different
techniques used by different spellcheckers and the accuracy they
achieved in providing candidate corrections to misspelled words.
The most efficient spellcheckers have an accuracy rate of 85%
and above. All of these spellcheckers utilize n-grams in their
models and most of them use Levenshtein distance (or its
variation). It should also be noted that the size of a corpus affects
the accuracy of a spellchecker, where corpora which are too big
or small can cause the accuracy to be limited or reduced [3, 12,
20]. The content of a corpus also affects the accuracy of a
spellchecker, which can be noted from Whitelaw et al.’s [20]
Gupta and Sharma’s [5] spellchecker. Whitelaw et al. uses the
web as a corpus, which is filled with a large amount of correctly
spelled as well as misspelled words. Because of this, their
spellchecker only achieved an accuracy rate of 68%. Whitelaw et
al. [20] used n-grams, Levenshtein distance and 7 confidence
classifiers, constructed using the noisy channel model. Gupta
and Sharma [5] also used n-grams and a Bayesian approach to
construct their spellchecker. They achieved an accuracy rate of
89.83%. The content of the corpora used contributed to achieving
this high accuracy.

It is difficult and would be inaccurate to compare all of the
techniques together and decide which technique listed above is
the best to utilize for the construction of all spellcheckers. This is
due to the effects that the selected language(s) and corpora have
on spellcheckers. However, it can be induced that using the
Levenshtein distance (or its variation) and/or n-grams can help
improve the accuracy level achieved by a spellchecker.

2.6 Ranking Candidate Corrections
After locating spelling errors in an input string, a

spellchecker will offer suggestions for correcting the misspelled
words [11]. Using the Levenshtein distance can help with the
selection of the best candidate corrections by calculating the
minimum edit distance for each candidate correction with the
misspelled word and scoring the candidate corrections.
Candidate corrections with higher edit operations are less
favoured than candidate corrections with lower edit operations
[6, 11].

A language model score can be used to select the best
candidate correction(s). This is done by substituting the
misspelled word with the candidate correction in the input
string. n N-grams are then extracted, which have the candidate
correction in all possible positions in the n-gram [6]. A score is
assigned to each n-gram according to the frequency or the
likelihood that an n-gram occurs in the corpus used. A score is
then assigned to the candidate correction, which is equal to the
average score of all n-grams. By using the language model score
assigned to the candidate corrections, words that are more
frequently used in the language will be favoured as the best
candidate corrections as opposed to words that are less
commonly used. This algorithm also helps with ranking

candidate words that may have the same edit distance away
from the misspelled word [6, 11, 14].

After the best candidate corrections are chosen, they are
displayed as suggestions. In the case where no candidate
corrections can be found, a “no suggestion” message can be
displayed and an option to add the word to a list of exception
words can also be provided by the spellchecker [12, 1].

3 SYSTEM DESIGN AND IMPLEMENTATION
This section details the design and implementation of the

techniques used to construct the error corrector. The system
provides candidate corrections for words flagged as incorrect by
the error detector developed by Ndaba et al. [12]. According to
Damerau, 80% of spelling errors occur from a single substitution,
insertion, deletion or transposition error in a word [18]. The
error corrector will focus on non-word errors originating from a
one-character change from the intended word. The design of the
error corrector was implemented using the Java programming
language. Java is a platform independent, portable, object
oriented programming language that offers vast libraries to ease
development. Java was used to develop the error detector and for
integration purposes, the error corrector is also developed using
this language.

3.1 Corpus
An isiZulu corpus was obtained from Dr. Langa Khumalo

from the Language Department of the University of KwaZulu-
Natal. The corpus comprises of isiZulu articles and novels stored
in text files. The corpus was cleaned by removing punctuation
(excluding apostrophes and hyphens occurring in isiZulu) and
non-isiZulu words occurring in the text files. The text files were
then used to construct trigrams.

3.2 Trigram Construction
A text file to store trigrams is created. A trigram is a group of

three consecutive characters. Trigrams are constructed by taking
each word in the corpus and using the following method to
obtain the trigram constituents of a word:

Starting from index position 0 of the given word:
o Find the next three consecutive characters of the word

from the index position to index + 2 and store them in the
trigrams text file.

o Increment the index by one.
o Repeat the above steps until index = length of
word - 3.
Unique trigrams from the trigram text files are stored in a

trigram list, which is used to calculate the various probabilities
mentioned in section 3.3.

3.3 Probabilities
Once the trigrams are constructed, a list of unique trigrams

occurring in the corpus is constructed. The frequency at which
each trigram, occurs in the corpus is counted and stored in a text
file together with the trigram from the trigram list. The
frequencies are used in the search algorithm to determine the

4

probability of a trigram being correct if it occurs in the trigram
list. Another set of probabilities calculated is the probability of a
specific trigram occurring after its precedent trigram. These
probabilities serve 2 purposes in the error corrector: to identify a
correct trigram that does not belong in the given word and to
determine the order of candidate corrections.

3.4 Search Algorithm
When a word from the input text is flagged as incorrect by

the error detector, the word is broken up into its trigram
constituents. The list of unique trigrams is then traversed to
identify every incorrect trigram in the word. A HashMap is used
to store the trigrams from the trigram list and their respective
frequencies. Only trigrams with frequencies greater than the
frequency threshold are stored in the HashMap. This improves
the performance of the system, since file accesses only occur
once when the program is initialized. An ArrayList is also
created to store trigrams stored in the HashMap. This is done for
easy traversal of all trigrams instead of using an Iterator on the
HashMap.

A trigram is viewed as incorrect if the trigram does not
appear in the trigram list or if the trigram occurs in the list, but
its frequency is below the assigned frequency threshold. Once a
trigram is identified as incorrect, the Damerau-Levenshtein (DL)
or minimum edit distance of the trigram and each unique
trigram is calculated. The DL distance is the minimum number of
operations that need to be performed in order to transform one
string into another [12]. All the trigrams that yield an edit
distance of 2 or lower are stored in an array. This method is
repeated for each trigram that is identified as incorrect.

DL is used to obtain candidate trigrams. The ArrayList is
traversed and the DL distance of each incorrect trigram and each
unique trigram is calculated. All trigrams from the ArrayList that
yield an edit distance of two or lower are stored in an ArrayList.
This method is repeated for each trigram that is identified as
incorrect.

3.5 Storing Candidate Trigrams
The ArrayList containing candidate trigrams needs to be

stored together with the incorrect trigram. This is achieved by
creating a Trigram object. The Trigram object consists of an
ArrayList to store candidate corrections and a String variable to
store the incorrect trigram. A Trigram object is created for each
trigram of the incorrect word and stored in a Trigram ArrayList.
Trigrams that are viewed as correct contain an empty
suggestions ArrayList.

3.6 Candidate Corrections Algorithm
Once all the incorrect trigrams are identified and candidate

trigrams are obtained by the search algorithm, the trigrams are
joined to form possible isiZulu words to display as candidate
corrections to the user. The candidate corrections are formed
using a brute force algorithm, where possible combinations of
candidate trigrams stored in ArrayLists are computed using
string manipulation. These combinations are also combined with

the correctly spelt trigrams of the flagged word to form
candidate corrections.

Due to the computational intensity of the algorithm, the
ArrayLists containing candidate trigrams are ordered and the
BinarySearch Algorithm is used to determine the start and end
indices to perform combinations on. The BinarySearch algorithm
determines the first and last strings in the ArrayList where a
combination between two strings is possible. This is done to
improve on the running time of the algorithm. By using
BinarySearch, the complexity is improved from O(n2) to
O(nlogn).

Due to the agglutinative nature of isiZulu, some of the
candidate corrections obtained from this algorithm might be
non-existent in the isiZulu language. To mitigate this, the list of
unique words from the corpus is traversed. All candidate
corrections that do not occur in this list are discarded. To further
improve on performance, all unique words occurring in the word
list are stored in a HashSet for quick access.

3.7 Optimization of Error Corrector
Two techniques are utilized to further improve on the

performance of the error corrector in finding candidate
corrections. The first technique, which is a novel technique, is to
check if the error that occurred is a transposition error. This is
done by checking if the trigram contains 2 adjacent consonants.
If there are 2 adjacent consonants, the consonants are swapped
and the HashMap containing the unique trigram is checked to
see if the trigram exists. If it does exist, string manipulation is
used to formulate a new word containing the trigram with the
swapped adjacent consonants. The HashSet containing unique
words is checked to see if the new word is a correct isiZulu
word. If it is correct, the word is displayed as a candidate
correction and the suggestions algorithm is terminated for this
word. This drastically optimizes the performance of the error
corrector, since candidate corrections do not need to be searched
for if the new word is found to be correct.

Probabilities are used in the second method to improve on the
accuracy of the error corrector in finding candidate corrections.
Due to the agglutinative nature of isiZulu, a trigram can be
viewed as correct by the error detector, but it is incorrect in the
given word. When obtaining candidate corrections through
string manipulation, the correct trigram is joined to the
candidate trigram to form a new string. If the trigram occurring
before the incorrect trigram does not belong in the word and the
previous trigram is recognized as correct, the intended word will
not appear as a candidate correction. To mitigate this, the
probabilities of trigram occurring after a specific trigram is
calculated. This is done by traversing through the corpus, where
every word is in its trigram form, and calculating the frequency
of the trigrams occurring next to each other in a given word.
This is done for all combinations of unique trigrams that have a
frequency >= 35 that can be combined to form a new string.
These probabilities are stored in a text file, where they are
accessed and stored in a HashMap when the system is initialised.
The trigram is used as a key and a TriNext object is stored as the
value. The TriNext object contains an ArrayList with all possible

 5

trigrams that can occur next as well as a HashMap containing
the probabilities of these trigrams.

When a trigram is viewed as correct, if the trigram is not the
first trigram of the word, the HashMap containing the
probabilitiees of the trigram occurring next after the previous
trigram is accessed to see if the previous trigram is stored as a
key. If the previous trigram is stored, the ArrayList containing
the possible trigrams that can occur next is set as the suggestions
ArrayList for this trigram.

3.8 Ordering of candidate corrections
In order to show the most relevant suggestions to users,

candidate corrections are ordered according to their probability
score in the following manner:

• Each candidate correction is broken up into its trigram
constituents and stored in an ArrayList.

• For each trigram (excluding the trigram occurring at
index 0), the probability of the trigram occurring after the
previous trigram is obtained.

• The probabilities are summed up and divided by the
total number of trigrams. The sum is stored in a HashMap with
the candidate correction as the key.

• The candidate corrections are then sorted according to
their probability score and at most 10 suggestions are displayed
to the user.

• Figure 1 depicts candidate corrections provided by the
system.

4 EXPERIMENT DESIGN AND EXECUTION
This section details the experiment design and execution

followed to determine the performance of the spell checker
based on different evaluation metrics.

4.1 Dataset

The corpora provided by Dr. Khumalo was used for training
the system and an isiZulu wordlist (“correct.txt”) obtained from
Norman Pilusa’s GitHub account5 was used as the testing dataset
to test the spell checker. We assume that each word in the
wordlist is correctly spelled. Four text files (“substitutions.txt”,
“transpositions.txt”, “insertions.txt” and “deletions.txt”) were
created to store spelling errors according to the type of nonword
error occurring. 6000 words from the wordlist were fed to an
error generating module6 to generate the various nonword
spelling errors. The module takes each word and randomly
injects a spelling error into the word and then stores the word in
the appropriate text file according to the spelling error that was
injected. Each text file contains 1500 incorrectly spelled words.

This method is used to create spelling errors as no resource
containing common misspellings occurring in isiZulu could be
found.

4.2 Evaluation Metrics
According to van Huyssteen et al [a], spellcheckers should

have a high proficiency of the language, in terms of flagging
very few correctly spelled words as incorrectly spelled. Ideally
the spell checker should flag all incorrectly spelled words and
provide candidate corrections to these words as well as
recognize all correctly spelled words in a given text. In this
section, we will look at the evaluation metrics that will be used
to evaluate the performance of the system.

4.2.1 Confusion Matrix
A confusion matrix (figure 2) is used to classify the results

into 4 categories: True Positives (TP), True Negatives (TN), False
Negatives (FN) and False Positives (FP). TP denotes the number
of words that are known to be correctly spelled that the system
recognizes as correctly spelled. TN are the number of correctly
spelled words that the system flags as incorrect. FP denotes the
number of incorrectly spelled words that the system flags as

incorrectly spelled. FN are the number of incorrectly spelled
words that the system recognizes as correctly spelled [12].

4.2.2 Recall Measures

5 https://github.com/normanpilusa/Isizulu_Spellchecker/blob/master/correct.txt
6https://github.com/benjholla/spellwrecker/blob/master/SpellWrecker/src/spellwrec
ker/components/spellwreckers/QwertySpellWrecker.java

 Recognized as

Correctly
Spelled

Flagged as
incorrectly
spelled

Correctly
spelled word

TP FN

Incorrectly
spelled word

FP TN

Figure 2: Confusion Matrix

Incorrect word Candidate Corrections
 Substitution
wasemausa
esedazuljka

wase, waso
esedazuluka

 Transposition
bezibguza
ngewzindlela

bezibuza
ngesizini, ngethi, ngenze, ngenza

 Insertion
zigqamia
ungasagcwli

zigqamisa
ungasho, ungase, unga

 Deletion
ephephandabeni
uhpakanyiswe

ephephandabeni, ephephandaba, ephe
uphakanyiswe

Figure 1: Candidate corrections for incorrectly spelled
words

6

 Recall measurements are used to denote how representative
the lexicon of the spellchecker is of the language as well as how
free is the lexicon used of incorrectly spelled words [a]. In order
to determine how representative the corpus is of the isiZulu
language, the lexical recall (LR) of the spellchecker is calculated.
LR is the number of correctly spelled words that are recognized
as correct by the spell checker (TP) in relation to the total
number of correctly spelled words in the text (TP + FN) [a, b]. LR
is calculated as follows:

𝐿𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

To determine how error-free the corpus is, we calculate the
Error Recall (ER) of the spell checker. ER is the number of
incorrectly spelled words flagged by the spell checker (TN) in
relation to the total number of incorrectly spelled words (TN +
FP) [a, b]. This is calculated using the following equation:

𝐸𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

4.2.3 Precision Measures
Precision measures are used to denote how accurate the spell

checker is at recognizing correctly spelled words (lexical
precision (LP)) and flagging incorrectly spelled words (error
precision (EP)) [a]. LP and EP calculated using the following
equations:

𝐿𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 𝐸𝑃 =

𝑇𝑁

𝐹𝑁+𝑇𝑁

4.2.4 Suggestion Adequacy and Accuracy
Suggestion Adequacy (SA) denotes the ability of the spell

checker to provide accurate suggestions that are relevant to the
user [a]. Accuracy (𝐶𝑠) is represented by the number of TN that
the error model was able to provide candidate corrections to.
This however, does not determine the relevance (𝐶𝑣) of the
suggestions. In order to determine the SA of the error model, the
𝐶𝑣 of the suggestions is calculated. 𝐶𝑣 is represented by the
number of corrections provided for TN that contain the intended
word that was incorrectly spelled.

𝐶𝑠 is determined by the number of words that obtained
suggestions from the error model. In order to determine 𝐶𝑣, a
scoring system is used based on the combination of scoring
systems used by Paggio and Underwood [c] and Van Zaanen and
Van Huyssteen [d]. The scoring system is as follows:

• If the suggestions contain the intended word:
𝐶𝑣 = 1

• If the suggestions do not contain the word: 𝐶𝑣 = 0.5
• If no suggestions provided: correct suggestion = 0

This scoring system is performed on each word and the total
sum for all TN determines 𝐶𝑣 . To get the percentage for
accuracy and relevance, 𝐶𝑣 and 𝐶𝑠 are divided by TN.

4.3 Design
The error detector uses a separate set of unique trigrams and

wordlist from the error corrector to perform error detection on
input text. Since the corpus utilized affects the performance of

the spell checker, the experiment began by testing which set of
unique trigrams and wordlist will provide better performance.
The system was tested using correctly spelled words stored in a
text file (“Accuracy.txt”). The set that yielded the highest TP
values was utilized for both error correction and error detection.
Once the trigramlist and wordlist was determined, the frequency
threshold (TF) for the system was determined.

TF is defined as the minimum frequency that a trigram can
occur in a corpus to be used in the system. Frequency denotes
the number of times a trigram occurs in a corpus. The TF of the
system was determined first by feeding the system with 1895
incorrectly spelled words stored in a text file (“threshold.txt”).
The file was iteratively tested using different TF values in each
iteration. The TN, FP, 𝐶𝑠 and 𝐶𝑣 values were recorded for each
iteration. The TF value that yielded the best results was utilized
for the remainder of the experiment.

After testing for the threshold frequency, the performance of
the system was tested with and without the use of 𝐶𝑣
optimization probabilities discussed in section 3.4.

In order to determine the performance of the system for each
type of spelling error, each text file containing the various
spelling errors was divided into three sections, with each section
containing 500 words. This is done to ascertain that the system
provides consistent results for each type of spelling error across
all phases. Each section was fed to the system and the resulting
TN, FP, 𝐶𝑠 and 𝐶𝑣 values were stored. This method was repeated
for each type of spelling error. Finally, the system was tested
using the testing dataset containing correctly spelled words. The
resulting TP and FP values were used together with the
cumulative TN and FN values to generate a confusion matrix.
The confusion matrix together with the cumulative 𝐶𝑣 and 𝐶𝑠
values were used to measure the recall, precision, accuracy and
SA of the system to determine the accuracy of the spellchecker.
The accuracy of the spellchecker is determined using the
following hypothesis in section 4.4.

4.4 Hypotheses
The following hypotheses are used to determine if the

spellchecker is successful at detecting and correcting nonword
spelling errors in isiZulu:

• Hypothesis 1: The system achieves an LR rate >= 85%
• Hypothesis 2: The system achieves an ER rate >= 80%
• Hypothesis 3: The system achieves an LP and EP rate

>=85%
• Hypothesis 4: The system achieves an accuracy rate >=

85%
• Hypothesis 5: The system achieves an overall

suggestion rate >= 60%

5. RESULTS AND DISCUSSION
This section describes the results obtained from the

experiment. Bar graphs and a confusion matrix are used to
analyze the results.

 7

5.1 Corpus and Threshold
Table 1(a) contains the results obtained from testing which

trigram and word list yielded the highest TP value.

Table 1(a): TP and FP results for trigram and word lists

TP FN Accuracy

Trigram and word
list from error

detector module

10328 2125 83%

Trigram and
wordlist from error
corrector module

10566 1887 85%

From the results obtained in table 1, the error detector has a

higher accuracy when the trigram and word list used to develop
the error corrector is used. Therefore, the error corrector and
error detector will utilize the same trigram and word list.

Table 1(b) shows the results after testing the system with
different TF values. The results show that a higher TF values
yield higher TP values and lower FP values. Although though TP
values for TF > 45 increase and FP values decrease, the
𝐶𝑣 values for TF > 45 decrease significantly as T F increases,
while TF <= 45 does not alter the 𝐶𝑣 value significantly.
Therefore, the chosen TF that will be used to determine if a
trigram is correct is 45. This will be the TF used to evaluate the
system.

Table 1(b): threshold results using “threshold.txt”

TF

TP FN 𝑪𝒔 𝑪𝒗

35 1584 311 1392 957

40 1599 296 1412 956

45 1608 287 1420 957

50 1615 280 1423 938

55 1625 270 1435 936

60 1633 262 1440 916

5.2 Alternatives
Table 2 denotes the performance of the system with and without
the use of optimization probabilities discussed in section 3.7.

Table 2: performance system with and without optimization

probabilities
 TN FP 𝑪𝒔 𝑪𝒗

Without
probabilities

1608 287 1420 957

With
probabilities

1608 287 1530 1014

The system performance in terms of accuracy and relevance

increases significantly when the optimization probabilities are
utilized. This proves that using the optimization probabilities
improves the overall accuracy and relevance of the error
corrector.

5.3 Nonword Error Performance Evaluation
The following results were obtained for each type of spelling

error.

5.3.1 Substitutions

The results obtained for each phase of testing for substitution
errors are listed below.

Table 3: substitution results

Phase

TN FP 𝑪𝒔 𝑪𝒗

1 398 102 366 240

2 401 99 376 235

3 415 85 381 243

Tota
l

121
4

286 1123 718

From the 1500 incorrectly spelled words with a substitution

error, 1214 words were flagged as incorrectly spelled and 286
words were recognized as correctly spelled. For each phase of
testing, the spell checker provided corrections to over 90% of TN,
with an average of 92% for accuracy. The 𝐶𝑣 values obtained
were not significantly lower than the 𝐶𝑠 values, with an average
difference of approximately 135 candidate corrections not
containing the intended word.

8

5.3.2 Insertions

Table 4 depicts results obtained for insertion errors.

Table 4: insertion results

Phase

TN FP 𝑪𝒔 𝑪𝒗

1 480 20 453 153

2 481 19 457 136

3 487 13 459 145

Tota
l

144
8

52 1369 434

For insertion errors, the spellchecker was able to significantly

detect incorrectly spelled words, yielding very low FN values for
each phase of testing. From the flagged words, the spell checker
achieved a high accuracy rate for each phase with an average
accuracy rate of 95%. 𝐶𝑣 was, however, significantly low for
each phase. This low 𝐶𝑣 rate could be caused from the extra
trigram created when a character is erroneously injected into a
word. The error corrector does not exclude this trigram when
providing candidate corrections and this might be the
contributing factor to the low 𝐶𝑣 values obtained.

5.3.3 Deletions

The 𝐶𝑠 results obtained for deletion errors are similar to
those achieved by the spellchecker for substitution and deletion
errors, with an average of 90% of TN being provided candidate
corrections. The TN values for each phase are however much
lower and the FP values increase significantly.

Table 5: deletion results

Phase

 TN FP 𝑪𝒔 𝑪𝒗

1 332 168 320 232

2 321 179 310 232

3 296 204 227 229

Tota
l

 949 551 857 693

The low TN and high FP values indicate that when a

character is omitted from a word, the trigram constituents of the
incorrect word have a high enough frequency that they are all
recognized as correct by the error detector. The TN and FP
values are an indication that the threshold frequency is too low
for deletion errors. This could also indicate that a much larger
corpus is required for the spell checker.

5.1.4 Transpositions

Looking at table 6, the spell checker’s performance for
transposition errors is the best from all the spelling errors. All
TN, 𝐶𝑠 and 𝐶𝑣 values are significantly high and all FP values are
significantly low.

Table 6: transposition results

Phase

TN FP 𝑪𝒔 𝑪𝒗

1 479 21 472 424

2 481 19 476 433

3 484 16 478 433

Tota
l

144
4

56 142
6

1290

The spell checker’s high performance in correcting

transposition errors results from the optimization method for
transposition errors, stated in section 3.7. Taking phase 1 and
running the spell checker without the optimization method
yields the following results in table 7

Table 7: Phase 1 performance with and without optimization

method for transposition errors
 TN FP 𝑪𝒔 𝑪𝒗

Optimized 479 21 472 424

Not Optimized 479 21 452 215

The results from table 7 shows that 𝐶𝑠 marginally decreases.

However, there is a significant decrease in the 𝐶𝑣 value obtained
without the use of the optimization method.

5.4.5 Cumulative results

This section details the cumulative performance results for
each spelling error. Figure 3 denotes the comparison of the
spelling errors according to TN, FP, 𝐶𝑠 and 𝐶𝑣 values.

Table 8: cumulative results for all spelling errors

Phase

TN FP 𝑪𝒔 𝑪𝒗

Substitutions 1214 286 1123 718

Insertions 1448 52 1369 434

Deletions 949 551 857 693

 9

Transpositions 1444 56 1426 1290

Total 5055 945 4775 3135

Table 8 shows the overall performance of the system. From

the cumulative results, it can be seen that the error detector is
able to detect transposition, substitution and insertion errors
adequately. The system, however, does not achieve the same
level of error detection for deletion errors. The system is also
able to adequately provide candidate corrections for all spelling
errors. When it comes to the intended word being a part of the
provided candidate corrections, the system has a low 𝐶𝑣 value
for insertion errors compared to the other spelling errors. Refer
to figure 3 for a visual depiction of the results from table 8.

Figure 3: Column chart representing cumulative results
for each spelling error

Overall, the system performs adequately at detecting and
correcting nonword errors. In order for a spell checker to be
successful, the system needs to be able to recognize correctly
spelled words as correct. To evaluate this, we take a look at the
system’s performance when it is fed with a text file containing
the correct words used to generate the nonword spelling errors.

5.5 System performance using correctly spelled
words

Figure 4 denotes the results for TP, FN, 𝐶𝑠 and 𝐶𝑣 obtained
from running the spell checker using the 6000 correctly spelled
words that were used for generating spelling errors.

Figure 4: Column chart representing cumulative results
for each spelling error

Figure 4 shows that the TP values are significantly higher
than the FN values. From the 6000 words, the system was able to
recognize 5341 words (89%) as correctly spelled. This shows that
the system can adequately recognize correctly spelled words.

5.6 Recall and Precision Measures
Figure 5 denotes the confusion matrix containing the overall

TN, FN, TP and TN values. TN and FP values are obtained from
table 7, and the TP and FN values are obtained from figure 4.

The confusion matrix from figure 5 is used to calculate the
recall and precision measures of the system.

5.6.1 Recall Measures

Using the equation from section 4.2.2 and the confusion
matrix, the following results are obtained for LR and ER:

𝐿𝑅 = 89% and 𝐸𝑅 = 84%

The result for LR proves that the system is representative of

the isiZulu language. Hypothesis 1 is proven to be correct.

1
2

1
4

2
8

6

1
1

2
3

7
1

8

1
4

4
8

5
2

1
3

6
9

4
3

4

9
4

9

5
5

1 8
5

7

6
9

3

1
4

4
4

5
6

1
4

2
6

1
2

9
0

T N F P C S C V

CUMULATIVE RESULTS

Substitutions Insertions

Deletions Transpositions

5341

659 523
0

0

1000

2000

3000

4000

5000

6000

TP FN Cs Cv

TP and FN results

No. of words

 Recognized as

Correctly
Spelled

Flagged as
incorrectly

spelled

Correctly
spelled word

TP = 5341 FN = 659

Incorrectly
spelled word

FP = 945 TN = 5055

Figure 5: Confusion Matrix

10

Hypothesis 2 is also proven to be true, with ER >= 80%. This
shows that the corpus used for the system is adequately free of
errors.

5.6.2 Precision Measures

Using the equation from section 4.2.3 and the confusion
matrix, the following results are obtained for LR and ER:

𝐿𝑃 = 85% and 𝐸𝑃 = 88%

The LP and EP values shows that the error detector is can

recognize correctly spelled and flag incorrectly spelled words.
Thus, hypothesis 3 is proven to be correct.

5.7 Suggestion Adequacy and Accuracy
Measures

This section focuses on the suggestion adequacy and
accuracy of the error corrector for each type of spelling error.
The overall suggestion adequacy and accuracy is also discussed
in this section.

Table 9 depicts the accuracy results for each spelling error
using the overall Cs and TN values for each type of spelling
error.

Table 9: Accuracy results for each spelling error

 𝑪𝒔 TN

Percentage
(%)

Substitutions 1123 1214 93

Insertions 1369 1448 95

Deletions 857 949 90

Transpositions 1426 1444 99

Total 4775 5055 94

The error corrector achieves an accuracy rate above 90% for

each type of spelling error. The overall accuracy of the system is
94%. This is an accuracy rate well above the expected accuracy
rate of 85%, proving hypothesis 4 to be correct.

Table 10 depicts the relevance results for each type of
spelling error as well as the combined relevance result.

Table 10: Relevance results for each spelling error
 𝑪𝒗 TN Percentage

(%)

Substitutions 718 1214 59

Insertions 434 1448 30

Deletions 693 949 73

Transpositions 1290 1444 89

Total 313
5

5055 62

For deletion errors, the system falls short in providing

corrections with the intended word as part of the candidate
corrections. The system achieves a relevance rate of only 30%.
Although the relevance rate for deletion errors is 30%, the
system achieves an overall relevance rate of 62%, which is
greater than the expected rate of 65%. Therefore, hypothesis 5 is
proven to be true. For a visual representation of the accuracy
and relevance rates achieved, refer to figure 6(a) and 6(b) in
Appendix A2.

6. CONCLUSIONS
Error detection and correction are important spell checking

aspects. In order for a spellchecker to be viewed as successful, it
should be representative of the language it is correcting, it’s
corpus or dictionary should be free of errors and it should be
able to recognize correctly spelled words and flag incorrectly
spelled words at a high accuracy rate. On top of this, the
spellchecker should be able to provide candidate corrections for
words that are flagged as incorrect using an error corrector. For
error correction to be viewed as successful, the error corrector
should be able to provide accurate and relevant suggestions to a
user [a].

In this paper, we implemented a statistical approach to
finding candidate corrections for isiZulu, which is the most
widely spoke languages in South Africa. An isiZulu spellchecker
that can only perform error detection was used. The isiZulu
language was chosen, since it is the only Bantu language with a
standalone error detector. This error corrector is the first step
towards providing error correction for more Nguni languages.
The error corrector was developed and integrated with the error
detector. The experiment was then performed on the complete
system. The system achieved a language recall rate of 89%, an
error recall of 84%, a language precision of 85% and an error
precision of 88%. The error corrector was found to have an
accuracy rate of 94%, which is well above the expected accuracy
rate of 85%. The suggestion adequacy of the system was found to
be 62%, which is also above the expected value of 60%. From the
following results, the spell checker is found to be successful at
detecting and correcting spelling errors.

7. FUTURE WORKS
This error corrector sets the first step towards achieving an

isiZulu spellchecker that can provide users with accurate and
relevant error correction. The error corrector performs expertly
at providing relevant candidate corrections for transposition
errors and it can adequately provide relevant candidate
corrections for substitution and insertion errors. The system

 11

however falls short when it comes to deletion errors. A method
to improve on the suggestion adequacy for deletion errors can be
a future addition to the spellchecker. The size of the corpus and
how error-free it is also plays a role in the overall performance
of the system. Looking at the effects of the corpus on the
performance of the system and implementing a larger corpus can
be looked at in future. Presently, the spell checker cannot
provide real-time error detection and autocorrection to the user.
This is another feature that can be implemented in future works.

APPENDIX A

A1 Table showing the language, corpora and
techniques used to develop existing
spellcheckers and how they performed
overall

Langua

ge
Corpora

Techniqu
e(s)

Performance

Ndaba
et al.
[12]

isiZulu

Ukwabel
ana

Corpus
(UC);

selection
of isiZulu
National
Corpus
(INC);
small

corpus of
news
items
(NIC)

trigrams
and

quadrigra
ms and n-
gram LM

INC
67%

accurac
y rate

NIC
76%

accurac
y rate

UC

Above
50%

accurac
y rate

Whitela
w et al.

[20]

English
and

Germa
n

Large
corpus of
crawled
public
web

pages

Substring
error

model, n-
gram LM,
Confidenc

e
classifiers
(construct
ed using

noisy
channel
model),

Englis
h

Total
error

rate for
best

system
= 2.62%

Suggesti
on rate
= 10%

Germ
an

Correcti
on error
rate =
7.89%

Total
error
rate =
9.8%

Samant
a and

Chaudh
uri [15]

English

BYU
corpus,
bigram

and
trigram,

text from
Project

Gutenber
g

Confusio
n set

construct
ed from

Levenshte
in

distance,
bigram

and
trigram
model,

stemming

85% accuracy rate
for top-ranked

suggestions, 93%
for top 2 ranked

suggestions

Schryve
r and

Prinsloo
[3]

isiZulu

isiZulu
Bona

magazine
, April
2003

N-grams
and

Levenshte
in

distance

68% accuracy

Gupta
and

Sharma
[5]

English

Brown
corpus

and set of
commonl

y
confused

words

Trigrams
and

Bayesian
approach

89.83% accuracy

A2 Column graphs depicting the cumulative
results for each spelling error.

Figure 6 (a): Column chart representing cumulative results
for each spelling error

9
3

5
9

9
5

3
0

9
0

7
3

9
9

8
9

C S C V

CUMULATIVE RESULTS

Substitutions Insertions
Deletions Transpositions

12

Figure 6 (b): Column chart representing cumulative results
for each spelling error

ACKNOWLEDGMENTS
I would like to thank Dr. Maria Keet for her guidance and

supervision through the development of the error corrector. I
would also like to thank Dr Langa Khumalo for providing the
corpus used in this research.

REFERENCES
[1] Bidyut, B. and Chaudhuri, A. A simple real-word error detection and
correction using local word bigram and trigram. In Proceedings of the
25th. Computational Linguistics and Speech Processing (ROCLING
2013). (Oct 4-5, 2013). ACLCLP, Taiwan, 2013.

[2] Chaudhuri, B. B. Reversed word dictionary and phonetically similar
word grouping based spell-checker to Bangla text. In Proc. LESAL
Workshop, Mumbai. 2001.

[3] Church, K. W. and Gale, W. A. Probability scoring for spelling
correction. Statistics and Computing, 1, 2 (Dec 1991), 93-103.
DOI=10.1007/BF01889984.

[4] Farra, N., Tomeh, N., Rozovskaya, A. and Habash, N. Generalized
Character-Level Spelling Error Correction. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics. (June 22-
27, 2014). ACL, Stroudsburg, Pennsylvania, 2014, 161-167.

[5] Hassan, A., Noeman, S. and Hassan, H. Language independent text
correction using finite state automata. In Proceedings of the 3rd

International Joint Conference on Natural Language Processing. (Jan 7-12,
2008). AFNLP, Hyderabad, India, 2008.

[6] Jurafsky, D. and Martin, J. H. Spelling Correction and the
Noisy Channel; 5, 1.

[7] Kanaris, I., Kanaris, K., Houvardas, I. and Stamatatos, E. Words versus
character n-grams for anti-spam Filtering. Int. J. Artif. Intell. Tools, 16, 06
(2007), 1047-1067. DOI=10.1142/S0218213007003692.

[8] Kernighan, M. D., Church, K. W. and Gale, W. A. A spelling
correction program based on a noisy channel model. In Proceedings of the
International Conference on Computational Linguistics. (August 20, 1990).
Association for Computational Linguistics, Stroudsburg, Pennsylvania,
1990, 205-210.

[9] Kukich, K. Techniques for automatically correcting words in text.
ACM Computing Surveys (CSUR), 24, 4 (Dec 1, 1992), 377-439.
DOI=10.1145/146370.146380.

[10] Mays, E., Damerau, F. J. and Mercer, R. L. Context based spelling
correction. Information Processing & Management, 27, 5 (1991), 517-522.

[11] Mitton, R. Ordering the suggestions of a spellchecker without using
context. Natural Language Engineering, 15, 02 (2009), 173-192.
DOI=10.1017/S1351324908004804.

[12] Ndaba, B., Suleman, H., Keet, C. M. and Khumalo, L. The effects of a
corpus on isiZulu spellcheckers based on N-grams.
In ISTAFRICA.2016. (May 11-13, 2016). IIMC, Durban, South Africa, 2016,
1-10.

[13] Oflazer, K. Error-tolerant finite-state recognition with applications
to morphological analysis and spelling correction. Computational
Linguistics, 22, 1 (1996), 73-89.

[14] Paggio, P. and Underwood, N. L. Validating the TEMAA LE
evaluation methodology: a case study on Danish spelling checkers.
Natural Language Engineering, 4, 3 (1998), 211-228.

[15] Pirinen, T. A. and Hardwick, S. Effect of Language and Error Models
on Efficiency of Finite-State Spell-Checking and Correction. In
Anonymous Finite State Methods and Natural Language Processing. (July
23-25, 2012). Association for Computational Linguistics, Stroudsburg,
Pennsylvania, 2012, 1-9.

[16] Schulz, K. U. and Mihov, S. Fast string correction with Levenshtein
automata. International Journal on Document Analysis and Recognition,
5, 1 (2002), 67-85. DOI=10.1007/s10032-002-0082-8.

[17] Sharma, S. and Gupta, S. A Correction Model for Real-word Errors.
Procedia Computer Science, 70, Supplement C (2015), 99-106.
DOI=//doi.org/10.1016/j.procs.2015.10.047.

[18] Starlander, M. and Popescu-Belis, A. Corpus-based Evaluation of a
French Spelling and Grammar Checker. In Anonymous International
Conference on Language Resources and Evaluation (LREC). (May 29-31,
2002). 2002.

[19] Tong, X. and Evans, D. A. A statistical approach to automatic OCR
error correction in context. In Anonymous (August 4, 1996). University
of Copenhagen, Copenhagen, Denmark, 88-100.

[20] Toutanova, K. and Moore, R. C. Pronunciation modeling for
improved spelling correction. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics. Association for Computational
Linguistics, Stroudsburg, Pennsylvania, 2002, 144-151.

[21] van Huyssteen, G. B., Eiselen, E. R. and Puttkammer, M. J. Re-
evaluating evaluation metrics for spelling checker evaluations. In
Proceedings of the 25th International Conference on Computational
Linguistics (COLING 2014). (August 24, 2014). ACL, Stroudsburg,
Pennsylvania, 2004, 91-99.

[22] Van Zaanen, M. and Van Huyssteen, G. Improving a spelling
checker for Afrikaans. Language and Computers, 47, 1 (2003), 143-156.

[23] Wagner, R. A. and Fischer, M. J. The string-to-string correction
problem. Journal of the ACM (JACM), 21, 1 (1974), 168-173.

[24] Whitelaw, C., Hutchinson, B., Chung, G. Y. and Ellis, G. Using the
web for language independent spellchecking and autocorrection. In
Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 2-Volume 2. Association for Computational
Linguistics, 2009, 890-899.

9
3 9
5

9
0 9

9

5
9

3
0

7
3 8

9

CUMULATIVE RESULTS

Cs Cv

