
Review of language-independent techniques for error detection
and correction of spellcheckers

Frida Mjaria
MJRFRI001

University of Cape Town

ABSTRACT
With constant adaptation of modern words that do not always
follow the morphological rules of a language, spellcheckers have
to be developed using language-independent techniques in order
to correct misspelled words with great accuracy and efficiency.
These techniques will be looked at in this review to find the best
candidates for developing an error corrector for the isiZulu
language. There are 3 components of which a spellchecker
comprises, viz. a dictionary, an error model and a language
model. Techniques such as n-gram models, the Levenshtein
distance, Finite State Automata and noisy channel models can be
jointly utilized to construct these components to provide the best
candidate corrections for misspelled words. It is found that
combining certain techniques together can improve the accuracy
of a spellchecker. The language and corpora used, however,
plays a significant role on the efficiency of these combinations
and therefore, no technique or set of techniques can be used for
all languages. It can be induced that utilizing n-grams and the
Levenshtein distance model is beneficial in improving the
accuracy rate of spellcheckers and in improving the ranking of
candidate selections. Language-independent spellcheckers are
able to achieve an accuracy rate of 85-89% for error detection
and correction of misspelled words.

KEYWORDS
Spellcheckers, language-independent, error correction, n-grams,
Levenshtein distance, NLP

1 INTRODUCTION
The Bantu languages spoken in South Africa can be categorized
under 2 branches - the Sotho-Tswana branch, comprising of
Sesotho, Sesotho sa Leboa (Northern Sotho) and Setswana, and
the Nguni branch, which comprises of isiZulu, isiXhosa,
isiNdebele and siSwati. From the Nguni languages, isiZulu is the
most widely spoken language in South Africa with 22.7% of the
population speaking isiZulu as a first/home language, followed
by isiXhosa at 16%, whereas only 9.6% of South Africans identify
with English as their first/home language1. Although isiZulu is
more widely spoken than English, there is currently not enough
support provided for writing in this language when it comes to
spelling error detection and correction. Very few or no
spellcheckers exist that can detect and correct typographical

1 Nguni on Britannica Academic: 2017.
http://academic.eb.com/levels/collegiate/article/55655. Accessed: 2017- 05- 08.

errors in Nguni. 2 spellcheckers currently exist for isiZulu that
are freely available online for use – one developed by
spellchecker.net2 and the other developed by Ndaba et al.3 [12].
The latter uses data-driven statistical models and n-grams and
can only detect misspelled words. The spellchecker has an
accuracy rate of 89%. The former can detect and correct
misspelled words. The methodology and accuracy of this
spellchecker is, however, not disclosed.

Spelling error correction is very relevant today due to many
real-world Natural Language Processing applications, such as
emails, blogs and social media messages. These applications
require autocorrection in order to perform accurately and
efficiently. A large amount of text is also generated online that is
informal and unedited by nature, requiring spelling error
detection and correction [4, 9, 15]. There are 2 main types of
spelling errors that occur, which spellcheckers aim at detecting
and correcting - nonword and real-word errors. Nonword errors
are words that are not found in the dictionary and are therefore
deemed to not exist, while real word errors are words that do
exist in the dictionary, but the context of the sentence causes
them to be incorrect. Real-word errors are very context sensitive,
making nonword errors easier to detect and correct than real
world errors, since the context of the language does not need to
be taken into account. To detect this error, a dictionary lookup is
performed to search for the input word. If the word matches a
word in the dictionary, then the word is said to be correctly
spelled. If no match is found in the dictionary, then the word is
flagged as a misspelled word [12, 17].

Word errors can be categorized either as insertions, deletions,
substitutions or transpositions [15]. An insertion error occurs
when an extra character is unintentionally inserted in a word.
This usually occurs with a user pressing 2 keys on the keyboard
simultaneously, one being the intended key, while the other
being erroneously pressed [1]. A deletion error occurs when a
character is unintentionally omitted from the word. Substitution
errors occur when correct characters are substituted by incorrect
characters - this can sometimes be attributed to the
pronunciation or phonetic sound of a word. Transposition errors
occur when the position of 2 characters in a word are exchanged
(ab -> ba) [1, 6]. 80% of misspelled words, which are nonword
errors, result from a single insertion, deletion, substitution or
transposition of characters [18].

2 https://www.spellchecker.net/africa_zulu_spell_checker.html
3 https://keet.wordpress.com/2016/11/11/launch-of-the-isizulu-spellchecker/

http://academic.eb.com/levels/collegiate/article/55655
https://www.spellchecker.net/africa_zulu_spell_checker.html
https://keet.wordpress.com/2016/11/11/launch-of-the-isizulu-spellchecker/

2

There are many different techniques that can be utilized in
developing a spellchecker. In this review, I will only focus on
techniques that are language-independent. Section 2 highlights
the importance of corpus selection for spellcheckers. Statistical
models and a Bayesian approach to error detection and
correction will be looked at in section 3. In section 4, the various
methods for ranking candidate corrections for misspelled words
will be discussed. Section 5 compares spellcheckers constructed
using the models discussed in section 2 and concludes with a
discussion on the efficiency of these models.

2 IMPORTANCE OF CORPUS SELECTION
A corpus is a collection of written texts used for linguistic
analysis.4 The quality of a spellchecker is affected by the type of
corpus utilized [12]. The efficiency of the error model of a
spellchecker is also affected by the corpus used. A corpus can
contain misspelled words, which may cause spellcheckers to
identify misspelled words in an input string as correctly spelled
and this may affect the accuracy rate of the spellchecker. For
instance, Whitelaw et al. [20] used the World Wide Web as a
large noisy corpus without any human tweaking of the corpus,
which included numerous misspelled words. This caused a
decrease in the efficiency of the spellchecker’s error detection
module. A corpus which mostly contains obsolete words that are
no longer used in the language can also reduce the accuracy of a
spellchecker. The spellchecker might flag modern words which
are correctly spelled as misspelled words [12].

The Language Model (LM) utilized can also be affected by the
corpus. With the usage of an n-gram LM to determine the best
candidate corrections, a corpus that is too small or contains
outdated or misspelled words may affect which candidate
corrections are selected as suggestions. The n-gram statistics
used in the LM would be computed from the corpus and
candidate corrections may receive an inaccurate higher or lower
LM score [12, 14, 20].

The efficiency of error detection and correction in a
spellchecker which uses a corpus can be increased by using
multiple corpora. The combination of these corpora in the error
and language model may, however, affect the accuracy and
should be taken into consideration [12].

3 TECHNIQUES FOR LANGUAGE-
INDEPENDENT ERROR DETECTION AND
CORRECTION

3.1 Components of a spellchecker
A spellchecker has the following 3 components - a dictionary, an
error model and an LM. A dictionary for a spellchecker is a list of
words that are mostly correctly spelled that make up the
dictionary of the spellchecker [14]. An LM in a spellchecker is
used to determine how frequent a word occurs in a corpus. A

4 Robin. What Is Corpus? on Natural Language Processing: 2009.
http://language.worldofcomputing.net/linguistics/introduction/what-is-corpus.html.
Accessed: 2017- 05- 11.

dictionary and text data can be used to build an LM [6]. An error
model is an algorithm for modelling spelling errors [14]. This
section takes a look at the different techniques that could be
used in constructing the components of a spellchecker.

3.2 N-gram analysis
An N-gram is an n-letter subsequence of words or a string,
where n is usually one, two or three and can sometimes equal
four [9]. N-grams can be represented as character n-grams or
word n-grams and form the dictionary of a spellchecker.
Traditional dictionaries are represented by full lexicon words or
word n-grams. Instead of storing word n-grams in a dictionary, a
corpus can be split into character n-grams and these can be
utilized1 as the dictionary of the spellchecker [8]. The use of
character n-grams instead of word n-grams might improve the
number of input words that a spellchecker identifies as correctly
spelled words. This can, however cause misspelled words to be
identified as correctly spelled [3, 8].

Error models use n-grams to predict whether a word is
misspelled by comparing an input word against n-grams in the
dictionary. With character n-grams, each n-gram in the input
word is compared with n-grams stored in the dictionary. If any
n-gram in an input word is not found in the dictionary, the word
is flagged as misspelled [12].

Higher-order n-grams are more context-sensitive, but have
sparse counts, while lower-order n-grams have higher counts,
but are less context sensitive. [12, 15]. N-grams can also be used
in an n-gram LM to determine the best candidate corrections by
computing the n-gram statistics of each candidate correction. An
N-gram statistic is the probability of an N-gram occurring in a
text and is computed from how frequent an n-gram occurs in
words from a corpus. Ndaba et al. state that the efficiency of an
n-gram model is dependent on the language used, based on their
findings that trigrams have a higher accuracy in detecting and
correcting errors in their isiZulu spellchecker compared to
quadrigrams [12].

N-grams are therefore very useful in the construction of a
dictionary for a spellchecker. They are also very useful in finding
candidate corrections through the computation of the
Levenshtein distance.

3.3 Levenshtein distance
The Levenshtein distance (LD), also known as the minimum edit
distance or Levenshtein-Damerau distance, is an algorithm used
to calculate the minimum edit distance required to transform one
word into another [1]. Edit distance is the number of insertion,
deletion, substitution and/or transposition operations that will
have to be performed on the misspelled word to acquire the
correctly spelled word [12, 15]. LD can be used together with n-
grams in an error model to identify misspelled words. LD can
also be used to find candidate corrections for the misspelled
word(s) [12].

LD can be very costly to compute, especially when using a

large corpus to formulate a dictionary using character n-grams.
Using LD in combination with another algorithm might improve

http://language.worldofcomputing.net/linguistics/introduction/what-is-corpus.html

 3

the computation time and might also improve on the accuracy of
the spellchecker [6].

3.4 Finite State Automata
This method represents the dictionary used with a spellchecker
as a deterministic finite state automation. Given an input string,
containing 1 or more words, a finite state machine (FSM) is
constructed for the input string, with each path representing a
word in the input string The FSM is then combined with the
dictionary FSM, resulting in an FSM that contains the
intersecting words from the input string FSM and dictionary
FSM (FSM with words that are correctly spelled from input
string). Calculating the difference between the dictionary FSM
and the FSM containing the intersecting words yields an FSM
containing all the words that are flagged as misspelled [6, 13, 16].

When it comes to traversing the dictionary automation and
finding candidate corrections for these misspelled words, there
are a few different algorithms that can be utilized. Oflazer uses
the Levenshtein edit distance together with the Wagner-Fisher
algorithm to traverse through the dictionary when finding
candidate corrections [13, 19]. By using an FSM together with
the Levenshtein distance and the Wagner-Fisher algorithm,
Oflazer was able to control the traversal of the dictionary
automation and avoid traversal of most of the dictionary states
[6]. Shulz and Mihov and Hassan et al. developed their finite
state automata techniques from Oflazer’s approach, but with a
few distinctions. Shulz and Mihov do not compute the
Levenshtein edit distance when traversing the dictionary. They
compute a deterministic Levenshtein automation of degree 1
[16]. The Levenshtein automation and the dictionary automation
are then traversed in parallel to extract candidate corrections. A
finite state acceptor is also constructed for each word in the
input string. The acceptor accepts all words which are an edit
distance k from the misspelled word to find candidate
corrections [6, 16].

Hassan et al. [6] also use a deterministic dictionary
automation. They do not compute the Levenshtein distance
either. To generate candidate corrections, Hassan et al. compute
a Levenshtein-transducer instead of computing a Levenshtein
automation like Shulz and Mihov [16]. They do, however,
construct a finite state acceptor and compose it with the
Levenshtein-transducer.

Using FSM can improve the performance of a spellchecker,
especially when combined with a Levenshtein automation or
Levenshtein-transducer to find candidate corrections.

3.5 Noisy Channel Model
The noisy channel model can also be used to find candidate
corrections for misspelled words. Each misspelled word in a text
is treated as if it was correctly spelled, but became “distorted” or
“noisy” from passing through a noisy channel, making the
correct word difficult to recognize. The “noise” represents
substitution, insertion, deletion and transposition changes. The
noisy channel model is a type of Bayesian inference, where
candidate corrections for a misspelled word are found by passing

every word in the dictionary through the noisy channel model to
find the word that comes closest to the misspelled word [7].

Candidate corrections can be found by calculating the
probability scores of all the words in the dictionary using the
noisy channel model. Whitelaw et al. [20] and Church and Gale
[2] state that candidate correction s for an observed word w can
be found by finding the word in the dictionary that maximizes
P(s) P(w | s), where P(s) is the prior model of word probabilities
and P(w | s) is the noisy channel model.

4 RANKING CANDIDATE CORRECTIONS
After locating spelling errors in an input string, a spellchecker
will offer suggestions for correcting the misspelled words [11].
Using the Levenshtein distance can help with the selection of the
best candidate corrections by calculating the minimum edit
distance for each candidate correction with the misspelled word
and scoring the candidate corrections. Candidate corrections
with higher edit operations are less favoured than candidate
corrections with lower edit operations [6, 11].

An LM score can be used to select the best candidate
correction(s). This is done by substituting the misspelled word
with the candidate correction in the input string. n N-grams are
then extracted, which have the candidate correction in all
possible positions in the n-gram [6]. A score is assigned to each
n-gram according to the frequency or the likelihood that an n-
gram occurs in the corpus used. A score is then assigned to the
candidate correction, which is equal to the average score of all n-
grams. By using the LM score assigned to the candidate
corrections, words that are more frequently used in the language
will be favoured as the best candidate corrections as opposed to
words that are less commonly used. This algorithm also helps
with ranking candidate words that may have the same edit
distance away from the misspelled word [6, 11, 14].

After the best candidate corrections are chosen, they are
displayed as suggestions. In the case where no candidate
corrections can be found, a “no suggestion” message can be
displayed and an option to add the word to a list of exception
words can also be provided by the spellchecker [12, 1].

5 COMPARISON OF TECHNIQUES UTILIZED
IN SPELLCHECKERS

The following table compares spellcheckers’ performances in
terms of accuracy achieved in detecting and correcting
misspelled words. The spellcheckers were constructed using the
techniques discussed in section 3. The languages and corpora
used are also indicated.

Table 1: Comparison of spellcheckers’ performance

Langu

age Corpora
Techniq

ue(s) Performance

Ndaba
et al. isiZulu

Ukwabel
ana

LD,
trigrams INC

67%
accurac

4

[12] Corpus
(UC);

selection
of isiZulu
National
Corpus
(INC);
small

corpus of
news
items
(NIC)

and
quadrigra
ms and n-
gram LM

y rate

NIC
76%

accurac
y rate

UC

Above
50%

accurac
y rate

Hassan
et al. [6]

Arabic
and

English
-

FSM,
Levenshte

in
transduce
r, n-gram

LM

89% accuracy

Whitela
w et al.

[20]

English
and

Germa
n

Large
corpus of
crawled
public
web

pages

Substring
error

model, n-
gram LM,
Confidenc

e
classifiers
(construct
ed using

noisy
channel
model),

Englis
h

Total
error

rate for
best

system
= 2.62%

Suggesti
on rate
= 10%

Germ
an

Correcti
on error
rate =
7.89%

Total
error
rate =
9.8%

Samant
a and

Chaudh
uri [15]

English

BYU
corpus,
bigram

and
trigram,

text from
Project

Gutenber
g

Confusio
n set

construct
ed from

Levenshte
in

distance,
bigram

and
trigram
model,

stemming

85% accuracy rate
for top-ranked

suggestions, 93%
for top 2 ranked

suggestions

Schryve
r and

Prinsloo
[3]

isiZulu

isiZulu
Bona

magazine
, April
2003

N-grams
and

Levenshte
in

distance

68% accuracy

Gupta
and

Sharma
[5]

English

Brown
corpus

and set of
commonl

y
confused

words

Trigrams
and

Bayesian
approach

89.83% accuracy

The above table shows different techniques used by different
spellcheckers and the accuracy they achieved in providing
candidate corrections to misspelled words. The most efficient
spellcheckers have an accuracy rate of 85% and above. All of
these spellcheckers utilize n-grams in their models and most of
them use Levenshtein distance (or its variation). Ndaba et al. [12]
were only able to achieve error detection with their spellchecker
and could not perform any error corrections on misspelled
words.

It should also be noted that the size of a corpus affects the
accuracy of a spellchecker, where corpora which are too big or
small can cause the accuracy to be limited or reduce [3, 12, 20].
The content of a corpus also affects the accuracy of a
spellchecker, which can be noted from Whitelaw et al.’s [20]
Gupta and Sharma’s [5] spellchecker. Whitelaw et al. uses the
web as a corpus, which is filled with a large amount of correctly
spelled as well as misspelled words. Because of this, their
spellchecker only achieved an accuracy rate of 68%. Whitelaw et
al. [20] used n-grams, Levenshtein distance and 7 confidence
classifiers, constructed using (the noisy channel model) to
construct their spellchecker. Gupta and Sharma [5] also used n-
grams and a Bayesian approach to construct their spellchecker.
They achieved an accuracy rate of 89.83%. The content of the
corpora used contributed to achieving this high accuracy.

It is difficult and would be inaccurate to compare all of the
techniques together and decide which technique listed above is
the best to utilize for the construction of all spellcheckers. This is
due to the effects that the selected language(s) and corpora have
on spellcheckers. However, it can be induced that using the
Levenshtein distance (or its variation) and/or n-grams can help
improve the accuracy level achieved by a spellchecker.

6 CONCLUSIONS
There are many language independent models that can be used
for error detection and correction. These models are typically
used in conjunction with each other to achieve a higher level of
accuracy of spelling suggestions for misspelled words. It is,
however, not possible to infer a technique or a set of techniques
for error detection and correction that would be suited for all
languages due to variations in language rules, the corpora used
as well as the conjugative or agglutinative nature of the selected
language(s) [13]. From these techniques, it can be deduced that a
spellchecker with error detection and correction for Nguni
languages can be constructed using statistical and/or Bayesian
approaches with great accuracy. The best spellcheckers achieve
an accuracy rate of 85% and above for error detection and
correction and use n-grams in their models. Most of the

 5

spellcheckers also use Levenshtein distance (or its variation) in
their models.

REFERENCES

[1] Chaudhuri, B. B. Reversed word dictionary and phonetically similar word

grouping based spell-checker to Bangla text. In Proc. LESAL Workshop,
(Mumbai, 2001).

[2] Church, K. W. and Gale, W. A. Probability scoring for spelling correction.
Statistics and Computing. 1, 2 (1991), 93-103. DOI=10.1007/BF01889984.

[3] de Schryver, G. and Prinsloo, D. J. Spellcheckers for the South African
languages, Part 1: The status quo and options for improvement. South
African Journal of African Languages. 24, 1 (2004), 57-82.

[4] Farra, N., Tomeh, N., Rozovskaya, A. and Habash, N. Generalized
Character-Level Spelling Error Correction. ACL (2). (2014), 161-167.

[5] Gupta, S. A., Sharma S. Correction Model for Real-word Errors. Procedia
Computer Science, 70 (2015), 99-106.

[6] Hassan, A., Noeman, S. and Hassan, H. Language independent text
correction using finite state automata. IJCNLP.Hyderabad. (2008).

[7] Jurafsky, D. and Martin, J. H. (2016). Spelling Correction and the Noisy
Channel (draft, 3ed). Speech and Language Processing.

[8]

Kanaris, I., Kanaris, K., Houvardas, I. and Stamatatos, E. Words versus
character n-grams for anti-spam filtering. Int. J. Artif. Intell. Tools. 16, 06
(2007), 1047-1067.

[9] Kukich, K. Techniques for automatically correcting words in text. ACM
Computing Surveys (CSUR). 24, 4 (1992), 377-439.
DOI=10.1145/146370.146380.

[10] Mays, E., Damerau, F. J. and Mercer, R. L. Context based spelling
correction. Information Processing & Management. 27, 5 (1991), 517-522.

[11] Mitton, R. Ordering the suggestions of a spellchecker without using
context. Natural Language Engineering. 15, 02 (2009), 173-192.
DOI=10.1017/S1351324908004804.

[12] Ndaba, B., Suleman, H., Keet, C. M. and Khumalo, L. The effects of a corpus
on isiZulu spellcheckers based on N-grams. IIMC. (2016), 1-10.

[13] Oflazer, K. Error-tolerant finite-state recognition with applications to
morphological analysis and spelling correction. Computational Linguistics.
22, 1 (1996), 73-89.

[14] Pirinen, T. A. and Hardwick, S. Effect of Language and Error Models on
Efficiency of Finite-State Spell-Checking and Correction. In FSMNLP
(2012), 1-9.

[15] Samanta, P. and Chaudhuri, B. B. A simple real-word error detection and
correction using local word bigram and trigram. In ROCLING (2013).

[16] Schulz, K. U. and Mihov, S. Fast string correction with Levenshtein
automata. International Journal on Document Analysis and Recognition. 5,
1 (2002), 67-85.

[17] Tong, X. and Evans, D. A. A statistical approach to automatic OCR error
correction in context. In Proceedings of the fourth workshop on very large
corpora, (1996), 88-100.

[18] Toutanova, K. and Moore, R. C. Pronunciation modeling for improved
spelling correction. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics. (2002), Association for
Computational Linguistics, 144-151.

[19] Wagner, R. A. and Fischer, M. J. The string-to-string correction problem.
Journal of the ACM (JACM). 21, 1 (1974), 168-173.

[20]

Whitelaw, C., Hutchinson, B., Chung, G. Y. and Ellis, G. Using the web for
language independent spellchecking and autocorrection. In Proceedings of
the 2009 Conference on Empirical Methods in Natural Language
Processing: Volume 2-Volume 2. (2009), Association for Computational
Linguistics, 890-899.

