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ABSTRACT 
With constant adaptation of modern words that do not always 
follow the morphological rules of a language, spellcheckers have 
to be developed using language-independent techniques in order 
to correct misspelled words with great accuracy and efficiency. 
These techniques will be looked at in this review to find the best 
candidates for developing an error corrector for the isiZulu 
language. There are 3 components of which a spellchecker 
comprises, viz. a dictionary, an error model and a language 
model. Techniques such as n-gram models, the Levenshtein 
distance, Finite State Automata and noisy channel models can be 
jointly utilized to construct these components to provide the best 
candidate corrections for misspelled words. It is found that 
combining certain techniques together can improve the accuracy 
of a spellchecker. The language and corpora used, however, 
plays a significant role on the efficiency of these combinations 
and therefore, no technique or set of techniques can be used for 
all languages. It can be induced that utilizing n-grams and the 
Levenshtein distance model is beneficial in improving the 
accuracy rate of spellcheckers and in improving the ranking of 
candidate selections. Language-independent spellcheckers are 
able to achieve an accuracy rate of 85-89% for error detection 
and correction of misspelled words. 
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1 INTRODUCTION 
The Bantu languages spoken in South Africa can be categorized 
under 2 branches - the Sotho-Tswana branch, comprising of 
Sesotho, Sesotho sa Leboa (Northern Sotho) and Setswana, and 
the Nguni branch, which comprises of isiZulu, isiXhosa, 
isiNdebele and siSwati. From the Nguni languages, isiZulu is the 
most widely spoken language in South Africa with 22.7% of the 
population speaking isiZulu as a first/home language, followed 
by isiXhosa at 16%, whereas only 9.6% of South Africans identify 
with English as their first/home language1. Although isiZulu is 
more widely spoken than English, there is currently not enough 
support provided for writing in this language when it comes to 
spelling error detection and correction. Very few or no 
spellcheckers exist that can detect and correct typographical 

                                                                 
1 Nguni on Britannica Academic: 2017. 
http://academic.eb.com/levels/collegiate/article/55655. Accessed: 2017- 05- 08. 

errors in Nguni. 2 spellcheckers currently exist for isiZulu that 
are freely available online for use – one developed by 
spellchecker.net2 and the other developed by Ndaba et al.3 [12]. 
The latter uses data-driven statistical models and n-grams and 
can only detect misspelled words. The spellchecker has an 
accuracy rate of 89%. The former can detect and correct 
misspelled words. The methodology and accuracy of this 
spellchecker is, however, not disclosed. 

Spelling error correction is very relevant today due to many 
real-world Natural Language Processing applications, such as 
emails, blogs and social media messages. These applications 
require autocorrection in order to perform accurately and 
efficiently. A large amount of text is also generated online that is 
informal and unedited by nature, requiring spelling error 
detection and correction [4, 9, 15]. There are 2 main types of 
spelling errors that occur, which spellcheckers aim at detecting 
and correcting - nonword and real-word errors. Nonword errors 
are words that are not found in the dictionary and are therefore 
deemed to not exist, while real word errors are words that do 
exist in the dictionary, but the context of the sentence causes 
them to be incorrect. Real-word errors are very context sensitive, 
making nonword errors easier to detect and correct than real 
world errors, since the context of the language does not need to 
be taken into account. To detect this error, a dictionary lookup is 
performed to search for the input word. If the word matches a 
word in the dictionary, then the word is said to be correctly 
spelled. If no match is found in the dictionary, then the word is 
flagged as a misspelled word [12, 17]. 

Word errors can be categorized either as insertions, deletions, 
substitutions or transpositions [15]. An insertion error occurs 
when an extra character is unintentionally inserted in a word. 
This usually occurs with a user pressing 2 keys on the keyboard 
simultaneously, one being the intended key, while the other 
being erroneously pressed [1]. A deletion error occurs when a 
character is unintentionally omitted from the word. Substitution 
errors occur when correct characters are substituted by incorrect 
characters - this can sometimes be attributed to the 
pronunciation or phonetic sound of a word. Transposition errors 
occur when the position of 2 characters in a word are exchanged 
(ab -> ba) [1, 6]. 80% of misspelled words, which are nonword 
errors, result from a single insertion, deletion, substitution or 
transposition of characters [18].  

                                                                 
2 https://www.spellchecker.net/africa_zulu_spell_checker.html 
3 https://keet.wordpress.com/2016/11/11/launch-of-the-isizulu-spellchecker/ 

http://academic.eb.com/levels/collegiate/article/55655
https://www.spellchecker.net/africa_zulu_spell_checker.html
https://keet.wordpress.com/2016/11/11/launch-of-the-isizulu-spellchecker/
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There are many different techniques that can be utilized in 
developing a spellchecker. In this review, I will only focus on 
techniques that are language-independent. Section 2 highlights 
the importance of corpus selection for spellcheckers. Statistical 
models and a Bayesian approach to error detection and 
correction will be looked at in section 3. In section 4, the various 
methods for ranking candidate corrections for misspelled words 
will be discussed. Section 5 compares spellcheckers constructed 
using the models discussed in section 2 and concludes with a 
discussion on the efficiency of these models.  

2 IMPORTANCE OF CORPUS SELECTION 
A corpus is a collection of written texts used for linguistic 
analysis.4 The quality of a spellchecker is affected by the type of 
corpus utilized [12]. The efficiency of the error model of a 
spellchecker is also affected by the corpus used. A corpus can 
contain misspelled words, which may cause spellcheckers to 
identify misspelled words in an input string as correctly spelled 
and this may affect the accuracy rate of the spellchecker. For 
instance, Whitelaw et al. [20] used the World Wide Web as a 
large noisy corpus without any human tweaking of the corpus, 
which included numerous misspelled words. This caused a 
decrease in the efficiency of the spellchecker’s error detection 
module. A corpus which mostly contains obsolete words that are 
no longer used in the language can also reduce the accuracy of a 
spellchecker. The spellchecker might flag modern words which 
are correctly spelled as misspelled words [12]. 

The Language Model (LM) utilized can also be affected by the 
corpus. With the usage of an n-gram LM to determine the best 
candidate corrections, a corpus that is too small or contains 
outdated or misspelled words may affect which candidate 
corrections are selected as suggestions. The n-gram statistics 
used in the LM would be computed from the corpus and 
candidate corrections may receive an inaccurate higher or lower 
LM score [12, 14, 20]. 

The efficiency of error detection and correction in a 
spellchecker which uses a corpus can be increased by using 
multiple corpora. The combination of these corpora in the error 
and language model may, however, affect the accuracy and 
should be taken into consideration [12]. 

3 TECHNIQUES FOR LANGUAGE-
INDEPENDENT ERROR DETECTION AND 
CORRECTION 

3.1 Components of a spellchecker 
A spellchecker has the following 3 components - a dictionary, an 
error model and an LM. A dictionary for a spellchecker is a list of 
words that are mostly correctly spelled that make up the 
dictionary of the spellchecker [14]. An LM in a spellchecker is 
used to determine how frequent a word occurs in a corpus. A 

                                                                 
4 Robin. What Is Corpus? on Natural Language Processing: 2009. 
http://language.worldofcomputing.net/linguistics/introduction/what-is-corpus.html. 
Accessed: 2017- 05- 11. 

dictionary and text data can be used to build an LM [6]. An error 
model is an algorithm for modelling spelling errors [14]. This 
section takes a look at the different techniques that could be 
used in constructing the components of a spellchecker. 

3.2 N-gram analysis 
An N-gram is an n-letter subsequence of words or a string, 
where n is usually one, two or three and can sometimes equal 
four [9]. N-grams can be represented as character n-grams or 
word n-grams and form the dictionary of a spellchecker. 
Traditional dictionaries are represented by full lexicon words or 
word n-grams. Instead of storing word n-grams in a dictionary, a 
corpus can be split into character n-grams and these can be 
utilized1 as the dictionary of the spellchecker [8]. The use of 
character n-grams instead of word n-grams might improve the 
number of input words that a spellchecker identifies as correctly 
spelled words. This can, however cause misspelled words to be 
identified as correctly spelled [3, 8]. 

Error models use n-grams to predict whether a word is 
misspelled by comparing an input word against n-grams in the 
dictionary. With character n-grams, each n-gram in the input 
word is compared with n-grams stored in the dictionary. If any 
n-gram in an input word is not found in the dictionary, the word 
is flagged as misspelled [12]. 

Higher-order n-grams are more context-sensitive, but have 
sparse counts, while lower-order n-grams have higher counts, 
but are less context sensitive. [12, 15]. N-grams can also be used 
in an n-gram LM to determine the best candidate corrections by 
computing the n-gram statistics of each candidate correction. An 
N-gram statistic is the probability of an N-gram occurring in a 
text and is computed from how frequent an n-gram occurs in 
words from a corpus. Ndaba et al. state that the efficiency of an 
n-gram model is dependent on the language used, based on their 
findings that trigrams have a higher accuracy in detecting and 
correcting errors in their isiZulu spellchecker compared to 
quadrigrams [12]. 

N-grams are therefore very useful in the construction of a 
dictionary for a spellchecker. They are also very useful in finding 
candidate corrections through the computation of the 
Levenshtein distance. 

3.3 Levenshtein distance 
The Levenshtein distance (LD), also known as the minimum edit 
distance or Levenshtein-Damerau distance, is an algorithm used 
to calculate the minimum edit distance required to transform one 
word into another [1]. Edit distance is the number of insertion, 
deletion, substitution and/or transposition operations that will 
have to be performed on the misspelled word to acquire the 
correctly spelled word [12, 15]. LD can be used together with n-
grams in an error model to identify misspelled words. LD can 
also be used to find candidate corrections for the misspelled 
word(s) [12].  

 
LD can be very costly to compute, especially when using a 

large corpus to formulate a dictionary using character n-grams. 
Using LD in combination with another algorithm might improve 

http://language.worldofcomputing.net/linguistics/introduction/what-is-corpus.html
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the computation time and might also improve on the accuracy of 
the spellchecker [6]. 

3.4 Finite State Automata 
This method represents the dictionary used with a spellchecker 
as a deterministic finite state automation.  Given an input string, 
containing 1 or more words, a finite state machine (FSM) is 
constructed for the input string, with each path representing a 
word in the input string The FSM is then combined with the 
dictionary FSM, resulting in an FSM that contains the 
intersecting words from the input string FSM and dictionary 
FSM (FSM with words that are correctly spelled from input 
string). Calculating the difference between the dictionary FSM 
and the FSM containing the intersecting words yields an FSM 
containing all the words that are flagged as misspelled [6, 13, 16]. 

When it comes to traversing the dictionary automation and 
finding candidate corrections for these misspelled words, there 
are a few different algorithms that can be utilized. Oflazer uses 
the Levenshtein edit distance together with the Wagner-Fisher 
algorithm to traverse through the dictionary when finding 
candidate corrections [13, 19]. By using an FSM together with 
the Levenshtein distance and the Wagner-Fisher algorithm, 
Oflazer was able to control the traversal of the dictionary 
automation and avoid traversal of most of the dictionary states 
[6]. Shulz and Mihov and Hassan et al. developed their finite 
state automata techniques from Oflazer’s approach, but with a 
few distinctions. Shulz and Mihov do not compute the 
Levenshtein edit distance when traversing the dictionary. They 
compute a deterministic Levenshtein automation of degree 1 
[16]. The Levenshtein automation and the dictionary automation 
are then traversed in parallel to extract candidate corrections. A 
finite state acceptor is also constructed for each word in the 
input string. The acceptor accepts all words which are an edit 
distance k from the misspelled word to find candidate 
corrections [6, 16]. 

Hassan et al. [6] also use a deterministic dictionary 
automation. They do not compute the Levenshtein distance 
either. To generate candidate corrections, Hassan et al. compute 
a Levenshtein-transducer instead of computing a Levenshtein 
automation like Shulz and Mihov [16]. They do, however, 
construct a finite state acceptor and compose it with the 
Levenshtein-transducer. 

Using FSM can improve the performance of a spellchecker, 
especially when combined with a Levenshtein automation or 
Levenshtein-transducer to find candidate corrections.   

3.5 Noisy Channel Model 
The noisy channel model can also be used to find candidate 
corrections for misspelled words. Each misspelled word in a text 
is treated as if it was correctly spelled, but became “distorted” or 
“noisy” from passing through a noisy channel, making the 
correct word difficult to recognize. The “noise” represents 
substitution, insertion, deletion and transposition changes. The 
noisy channel model is a type of Bayesian inference, where 
candidate corrections for a misspelled word are found by passing 

every word in the dictionary through the noisy channel model to 
find the word that comes closest to the misspelled word [7]. 

Candidate corrections can be found by calculating the 
probability scores of all the words in the dictionary using the 
noisy channel model. Whitelaw et al. [20] and Church and Gale 
[2] state that candidate correction s for an observed word w can 
be found by finding the word in the dictionary that maximizes 
P(s) P(w | s), where P(s) is the prior model of word probabilities 
and P(w | s) is the noisy channel model. 

4  RANKING CANDIDATE CORRECTIONS 
After locating spelling errors in an input string, a spellchecker 
will offer suggestions for correcting the misspelled words [11]. 
Using the Levenshtein distance can help with the selection of the 
best candidate corrections by calculating the minimum edit 
distance for each candidate correction with the misspelled word 
and scoring the candidate corrections. Candidate corrections 
with higher edit operations are less favoured than candidate 
corrections with lower edit operations [6, 11]. 

An LM score can be used to select the best candidate 
correction(s). This is done by substituting the misspelled word 
with the candidate correction in the input string. n N-grams are 
then extracted, which have the candidate correction in all 
possible positions in the n-gram [6]. A score is assigned to each 
n-gram according to the frequency or the likelihood that an n-
gram occurs in the corpus used. A score is then assigned to the 
candidate correction, which is equal to the average score of all n-
grams. By using the LM score assigned to the candidate 
corrections, words that are more frequently used in the language 
will be favoured as the best candidate corrections as opposed to 
words that are less commonly used. This algorithm also helps 
with ranking candidate words that may have the same edit 
distance away from the misspelled word [6, 11, 14]. 

After the best candidate corrections are chosen, they are 
displayed as suggestions. In the case where no candidate 
corrections can be found, a “no suggestion” message can be 
displayed and an option to add the word to a list of exception 
words can also be provided by the spellchecker [12, 1]. 

5  COMPARISON OF TECHNIQUES UTILIZED 
IN SPELLCHECKERS 

The following table compares spellcheckers’ performances in 
terms of accuracy achieved in detecting and correcting 
misspelled words. The spellcheckers were constructed using the 
techniques discussed in section 3. The languages and corpora 
used are also indicated. 

Table 1: Comparison of spellcheckers’ performance 

 
Langu

age Corpora 
Techniq

ue(s) Performance 

Ndaba 
et al. isiZulu 

Ukwabel
ana 

LD, 
trigrams INC 

67% 
accurac
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[12] Corpus 
(UC); 

selection 
of isiZulu 
National 
Corpus 
(INC); 
small 

corpus of 
news 
items 
(NIC) 

and 
quadrigra
ms and n-
gram LM 

y rate 

NIC 
76% 

accurac
y rate 

UC 

Above 
50% 

accurac
y rate 

Hassan 
et al. [6] 

Arabic 
and 

English 
- 

FSM, 
Levenshte

in 
transduce
r, n-gram 

LM 

 
89% accuracy 

Whitela
w et al. 

[20] 

English 
and 

Germa
n 

Large 
corpus of 
crawled 
public 
web 

pages 

Substring 
error 

model, n-
gram LM, 
Confidenc

e 
classifiers 
(construct
ed using 

noisy 
channel 
model), 

Englis
h 

Total 
error 

rate for 
best 

system 
= 2.62% 

 
Suggesti
on rate 
= 10% 

Germ
an 

Correcti
on error 
rate = 
7.89% 

 
Total 
error 
rate = 
9.8% 

Samant
a and 

Chaudh
uri [15] 

English 

BYU 
corpus, 
bigram 

and 
trigram, 

text from 
Project 

Gutenber
g 

Confusio
n set 

construct
ed from 

Levenshte
in 

distance, 
bigram 

and 
trigram 
model, 

stemming 

85% accuracy rate 
for top-ranked 

suggestions, 93% 
for top 2 ranked 

suggestions 

Schryve
r and 

Prinsloo 
[3] 

isiZulu 

isiZulu 
Bona 

magazine
, April 
2003 

N-grams 
and 

Levenshte
in 

distance 

68% accuracy 

Gupta 
and 

Sharma 
[5]  

English 

Brown 
corpus 

and set of 
commonl

y 
confused 

words 

Trigrams 
and 

Bayesian 
approach 

89.83% accuracy 

 
The above table shows different techniques used by different 
spellcheckers and the accuracy they achieved in providing 
candidate corrections to misspelled words. The most efficient 
spellcheckers have an accuracy rate of 85% and above. All of 
these spellcheckers utilize n-grams in their models and most of 
them use Levenshtein distance (or its variation). Ndaba et al. [12] 
were only able to achieve error detection with their spellchecker 
and could not perform any error corrections on misspelled 
words. 

It should also be noted that the size of a corpus affects the 
accuracy of a spellchecker, where corpora which are too big or 
small can cause the accuracy to be limited or reduce [3, 12, 20]. 
The content of a corpus also affects the accuracy of a 
spellchecker, which can be noted from Whitelaw et al.’s [20] 
Gupta and Sharma’s [5] spellchecker. Whitelaw et al. uses the 
web as a corpus, which is filled with a large amount of correctly 
spelled as well as misspelled words. Because of this, their 
spellchecker only achieved an accuracy rate of 68%. Whitelaw et 
al. [20] used n-grams, Levenshtein distance and 7 confidence 
classifiers, constructed using (the noisy channel model) to 
construct their spellchecker. Gupta and Sharma [5] also used n-
grams and a Bayesian approach to construct their spellchecker. 
They achieved an accuracy rate of 89.83%. The content of the 
corpora used contributed to achieving this high accuracy. 

It is difficult and would be inaccurate to compare all of the 
techniques together and decide which technique listed above is 
the best to utilize for the construction of all spellcheckers. This is 
due to the effects that the selected language(s) and corpora have 
on spellcheckers. However, it can be induced that using the 
Levenshtein distance (or its variation) and/or n-grams can help 
improve the accuracy level achieved by a spellchecker. 

6 CONCLUSIONS 
There are many language independent models that can be used 
for error detection and correction. These models are typically 
used in conjunction with each other to achieve a higher level of 
accuracy of spelling suggestions for misspelled words. It is, 
however, not possible to infer a technique or a set of techniques 
for error detection and correction that would be suited for all 
languages due to variations in language rules, the corpora used 
as well as the conjugative or agglutinative nature of the selected 
language(s) [13]. From these techniques, it can be deduced that a 
spellchecker with error detection and correction for Nguni 
languages can be constructed using statistical and/or Bayesian 
approaches with great accuracy. The best spellcheckers achieve 
an accuracy rate of 85% and above for error detection and 
correction and use n-grams in their models. Most of the 
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spellcheckers also use Levenshtein distance (or its variation) in 
their models.  
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