

Computer​ ​Science​ ​Honours
Final​ ​Paper

2016

Title:​ ​A​ ​spellchecker​ ​for​ ​isiXhosa

Author:​ ​Nthabiseng​ ​Mashiane

Project​ ​Abbreviation:​ ​ALSPEL

Supervisor(s):​ ​Dr​ ​Maria​ ​Keet

Category Min Max Chosen
Requirement​ ​Analysis​ ​and​ ​Design 0 20 15
Theoretical​ ​Analysis 0 25
Experiment​ ​Design​ ​and​ ​Execution 0 20 10
System​ ​Development​ ​and​ ​Implementation 0 15 15
Results,​ ​Findings​ ​and​ ​Conclusion 10 20 10
Aim​ ​Formulation​ ​and​ ​Background​ ​Work 10 15 10
Quality​ ​of​ ​Paper​ ​Writing​ ​and​ ​Presentation 10 10
Quality​ ​of​ ​Deliverables 10 10
Overall​ ​General​ ​Project​ ​Evaluation​​ ​(​this​ ​section
allowed​ ​only​ ​with​ ​motivation​ ​letter​ ​from​ ​supervisor​)

0 10

Total​ ​marks 80 80

https://docs.google.com/document/d/1UL9JU-iuQeWXNcnDN8M7e6qAZdr9TZtGra6Xz-ecLAU/edit#heading=h.30j0zll

Data-driven​ ​statistical​ ​model​ ​based​ ​error​ ​detector​ ​for

IsiXhosa

Nthabiseng​ ​Mashiane
Computer​ ​Science​ ​Honors
mshnth009@myuct.ac.za

ABSTRACT
The proliferation of digitization in our lives warrants the
development of tools that ensure efficient digitization and correct
usage of data, in this case, textual data. In addition, good quality
texts provide accessibility to knowledge and content which could
promote further content generation. Word processors ensure that
text adheres to the rules of language through validating the data
which is presented to it, as per the language rules. Many Bantu
languages aren’t supported on such tools thus, content creation
and​ ​access​ ​in​ ​Bantu​ ​languages​ ​is​ ​scarce.

Very few spellcheckers exist for Bantu languages. There are only
two spellcheckers that exist for Bantu languages developed by
Ndaba et al. [13] and spellchecker.net. Spellcheckers are used in

1

many computer applications such as word processors, emails and
cellphones [13] therefore, it is important that different languages
are supported to ensure efficient and correct digitization of data as
well as access to correct, readable data which is free of errors..
This paper looks at the development process of a statistical-based
model isiXhosa spellchecker, the software development of the
spellchecker as well as the outcome thereof. The spellchecker
was​ ​developed,​ ​tested​ ​and​ ​refined​ ​with​ ​an​ ​accuracy​ ​of​ ​79%.

Keywords
Digitization,​ ​spellchecking,​ ​Corpus,​ ​Isolated​ ​word​ ​error-detection

1. INTRODUCTION
Currently,​ ​not​ ​many​ ​African​ ​languages​ ​are​ ​supported​ ​on​ ​existing
word​ ​processors.​ ​IsiZulu,​ ​IsiXhosa,​ ​Sepedi,​ ​SeSotho,​ ​Setswana,
TshiVenda,​ ​XiTsonga,​ ​IsiNdebele​ ​and​ ​IsiSwati​ ​are​ ​collectively
known​ ​as​ ​Bantu​ ​languages​ ​and​ ​are​ ​the​ ​largest​ ​language​ ​group​ ​in
South​ ​Africa.​ ​​ ​Within​ ​these​ ​Bantu​ ​languages​ ​exists​ ​a​ ​sub-group
known​ ​as​ ​Nguni​ ​wherein​ ​the​ ​language​ ​being​ ​focused​ ​on​ ​in​ ​this
paper​ ​-isiXhosa​ ​-​ ​is​ ​found.​ ​According​ ​to​ ​the​ ​2011​ ​census​ ​of​ ​South
Africa,​ ​approximately​ ​8.1​ ​million​ ​people​ ​speak​ ​isiXhosa​ ​which
accounts​ ​for​ ​16%​ ​of​ ​the​ ​population​ ​of​ ​South​ ​Africa,​ ​second​ ​to
23%​ ​of​ ​isiZulu​ ​speakers​ ​in​ ​South​ ​Africa.​ ​To​ ​this​ ​end,​ ​an​ ​isiXhosa
spellchecker​ ​was​ ​created​ ​in​ ​the​ ​course​ ​of​ ​the​ ​project​ ​using​ ​a
data-driven​ ​statistical​ ​language​ ​model​ ​in​ ​an​ ​attempt​ ​to​ ​create​ ​more
online​ ​tools​ ​to​ ​support​ ​African​ ​languages.

A​ ​spellchecker​ ​is​ ​software​ ​that​ ​analyses​ ​possible​ ​misspelling​ ​in
text​ ​[17].​ ​Spellchecking​ ​mainly​ ​comprises​ ​of​ ​error​ ​detection​ ​and

1https://keet.wordpress.com/2016/11/11/launch-of-the-isizulu-spellchecker/

error​ ​correction.​ ​Spelling​ ​errors​ ​can​ ​be​ ​categorised​ ​into​ ​two,
real-word​ ​errors​ ​and​ ​non-word​ ​errors.​ ​A​ ​real-word​ ​is​ ​a​ ​word
which​ ​follows​ ​the​ ​orthographic​ ​rules​ ​of​ ​a​ ​language​ ​but​ ​contains
mistakes​ ​while​ ​a​ ​non-word​ ​is​ ​defined​ ​as​ ​a​ ​set​ ​of​ ​consecutive
letters​ ​which​ ​does​ ​not​ ​follow​ ​orthographic​ ​rules​ ​of​ ​a​ ​language
[16].​ ​Spellcheckers​ ​are​ ​available​ ​for​ ​languages​ ​which​ ​carry
commercial​ ​value​ ​such​ ​as​ ​English,​ ​French,​ ​Spanish,​ ​​ ​etc.​ ​and​ ​less
so​ ​for​ ​some​ ​indigenous​ ​languages​ ​particularly​ ​in​ ​Africa​ ​[16].

Bantu​ ​languages​ ​are​ ​widely​ ​spoken​ ​yet​ ​do​ ​not​ ​have​ ​many​ ​tools
which​ ​aid​ ​textual​ ​digitization​ ​of​ ​the​ ​language.​ ​In​ ​addition,​ ​these
languages​ ​are​ ​not​ ​largely​ ​documented​ ​online.​ ​IsiXhosa​ ​is​ ​one​ ​of
the​ ​eleven​ ​official​ ​languages​ ​in​ ​South​ ​Africa​ ​that​ ​can​ ​be​ ​used​ ​in
formal​ ​communication​ ​including​ ​court​ ​trials,​ ​healthcare​ ​access
and​ ​news​ ​content​ ​generation.​ ​The​ ​increase​ ​of​ ​technological
devices​ ​to​ ​capture​ ​such​ ​communication​ ​is​ ​on​ ​the​ ​rise​ ​and​ ​can
benefit​ ​from​ ​a​ ​spellchecker​ ​to​ ​improve​ ​accuracy​ ​when
transmitting​ ​and​ ​translating​ ​information.​ ​The​ ​lack​ ​of​ ​online​ ​tool
support​ ​in​ ​Bantu​ ​languages​ ​impedes​ ​opportunities​ ​for​ ​research
and​ ​for​ ​non-English​ ​speakers​ ​to​ ​contribute​ ​knowledge​ ​on​ ​a​ ​bigger
platform​ ​such​ ​as​ ​the​ ​internet.​ ​Lastly,​ ​spellcheckers​ ​can​ ​aid​ ​with
the​ ​preservation​ ​of​ ​the​ ​language​ ​as​ ​the​ ​data​ ​stored​ ​can​ ​be​ ​used​ ​at​ ​a
later​ ​stage​​ ​​showing​ ​the​ ​history​ ​of​ ​the​ ​language​ ​and​ ​how​ ​it​ ​has
evolved.

The​ ​aim​ ​of​ ​the​ ​project​ ​is​ ​to​ ​create​ ​a​ ​spellchecker​ ​for​ ​isiXhosa​ ​that
can​ ​correctly​ ​perform​ ​isolated​ ​non-word​ ​error​ ​detection​ ​​ ​as​ ​there
is​ ​currently​ ​no​ ​standalone​ ​spellchecker​ ​for​ ​isiXhosa.​ ​A​ ​secondary
aim​ ​of​ ​this​ ​project​ ​is​ ​to​ ​investigate​ ​the​ ​accuracy​ ​of​ ​the​ ​isiXhosa
spellchecker​ ​and​ ​assess​ ​whether​ ​it​ ​can​ ​achieve​ ​the​ ​same​ ​accuracy
or​ ​exceed​ ​that​ ​of​ ​the​ ​standalone​ ​isiZulu​ ​spellchecker​ ​created​ ​by
Ndaba​ ​et​ ​al.​ ​[13]​ ​which​ ​has​ ​an​ ​accuracy​ ​of​ ​89%.

2. LITERATURE​ ​REVIEW
This section looks at the related work done on spellcheckers for
African​ ​languages.

2.1 Digitization​ ​of​ ​African​ ​languages
In South Africa, after democracy, there has been an increase in
use of the eleven official languages in official documents as
policies have been amended by the state to allow citizens the
option of receiving information in their language of choice as
opposed to the pre-democratic standard of English/Afrikaans.
“Digitization has been defined as the conversion of analogue

https://keet.wordpress.com/2016/11/11/launch-of-the-isizulu-spellchecker/

media to digital form”[1]. It is necessary to digitize African
languages as foreign concepts are often imposed on Africa and
overwhelm and overpower or heritage [1]. Gibbon et al.[6] further
stresses the pertinence of digitization of endangered languages.
Digitization of African languages allows for the preservation of
the heritage and culture and gives emergence of potential areas of
research which could possibly increase the number of linguistic
experts particularly in South Africa and other African countries.
There is a general insufficient digitization of African languages,
but there has been an increasing presence in local languages on
the web through channels such as blogs and online publishing
forums[18]. Bosch et al.[3] note that there are no standards for
digitization let alone machine readable lexica which impedes the
digitization​ ​of​ ​these​ ​languages.

Bernstein et al. [2] created a web based interactive word
processing interface which enables an online community to aid
other members with various writing tasks such as editing,
proofreading, formatting, etc. called Soylent. In addition, Soylent
enables parties to condense text to meet the required word count
in the event that the word count is above the limit as well as a
proofreading mechanism written using machine learning
algorithms. Moving forward, if a South African spellchecker can
take this approach for data collection, it could possibly dissolve
the lack of linguistic experts for indigenous languages through the
community of native speakers that would engage online. This will
allow both expansion of the knowledge and peer review base of
the data posted. Some issues noted with this approach are that
more often than not, reviewers of work submitted can either do
the bare minimum or go above and beyond their requirements. In
both cases, extra work is created for the end user [2] which is
undesirable​ ​for​ ​a​ ​spell​ ​checking​ ​tool.
Although texts are now written and are available in various
languages in South Africa, not much of these texts are digitized.
This is due to the scarcity of linguistic experts in South Africa as
well the lack of a standard procedure of data digitization which
ensures that the data is captured in a machine readable form [3].
Standards of data digitization could possibly aid in the creation
and advancement of new and existing spell checking tools. Lastly,
the tools in existence are costly and proprietary e.g. Spelling
Checkers for South African languages, WordPerfect 9. There are
no effective open source tools in existence and limited funding is
available for these tools to be created, thus, the isiXhosa
spellchecker developed here will be open source allowing
everyone​ ​access​ ​to​ ​it.

2.2 Spellchecking​ ​techniques
Spellchecking is made up of two main techniques which are error
correction and error detection. Error correction in text has been
mainly focused on three areas; non-word error correction,
isolated-word error correction and context-dependent word
correction while error detection in text has focused on non-word
error detection and isolated-word error detection [11]. Error
detection involves the analysis of pre-generated n-grams from
some language corpus as one of the techniques, these n-grams
may be static or dynamic. Error detection has been successfully

implemented while error correction is still progressively being
worked on. Kukich [11] classifies errors into two; typographical
errors which are misspellings and cognitive errors which are
errors made by people who don’t know how to spell the words.
Cognitive errors include phonetic errors as well as errors
associated with homonyms that can produce a valid word which is
erroneous in context. These two types of errors have to be
considered​ ​when​ ​creating​ ​a​ ​spell​ ​checking​ ​tool.

Error correction for South African/Bantu languages is still being
developed, with efficient algorithms and tools yet to be found.
There exist many other techniques of error detection in addition to
the one mentioned above. These include minimum edit distance
where the algorithm looks for the smallest number of
insertions/deletions to correct a word. Another method is the
similarity key technique where strings which have a similar
spelling are mapped to identical or the same key so that the key of
the misspelled word is similar to that of a correctly spelled word
or at least gives possible options of the correct word. This seems
like a good approach as Damerau [5] ​found that 80% of errors in
text are a combination of insertion, deletion, substitution and
transposition

The structure of African languages is very different from that of
the languages currently catered for in spell checking software [7],
and this is why not much can be leveraged from the existing spell
checkers. String matching algorithms as well as dictionary lookup
approaches have been used for spellchecking in Bangla. Neither
the string matching algorithms nor the dictionary lookup methods
cater for homonym errors i.e. the errors detected aren’t specific to
context. Moreover, 80% of errors in text are a combination of
insertion,​ ​deletion,​ ​substitution​ ​[20,​ ​5].

2.3 Spellchecking​ ​advancements
This section looks at the spellcheckers which are currently in
existence.

The first spell checker for South African languages was created by
D.J Prinsloo [16] in the 1990s. This spellchecker initially worked
for isiZulu, Sesotho sa Leboa and Setswana. Later in 2003,
Prinsloo [16] improved the functionality of the spellchecker by
increasing​ ​the​ ​size​ ​of​ ​the​ ​wordlists​ ​used​ ​for​ ​spell​ ​checking.

Development of spellchecking tools in South Africa has mainly
been focused on non-word error detection as opposed to error
correction. According to De Schryver et al. [4], non-word error
detection works best when tested against Sesotho sa Leboa vs
isiZulu and Afrikaans. Binary n-grams have been used
successfully for OCR applications, for spellchecking, probabilistic
n-grams are used instead. The higher the order of the n-gram tree,
the richer the information [4]. Ndaba et al. [13] created an isiZulu
standalone spellchecker which performs non-word error detection.
This spellchecker was created using the data-driven statistical
approach​ ​and​ ​using​ ​character​ ​trigrams.

More advanced developments lean towards a more dynamic or
automatic error detection where, instead of statically spell
checking text after it has been written, spellcheck while they are
being typed [9]. Another development is the notion of identifying
different languages in texts in order to spellcheck accordingly.
Some of the languages in South Africa usually have diacritics
which alter meaning of the word and pose issues when the words
are encoded and decoded, more so when the encoding mechanism
is not specified and because there is no current standard of
encoding. This issue is usually encountered when the sources of
data are varied (Internet, blogs, etc.) as it makes is difficult to
encode​ ​and​ ​decode​ ​characters.

UzZaman and Khan [20] created a Bangla spell checker using
generic algorithms which were not tailored to the Bangla language
which is spoken in India. In the process, they noted that the
orthographic rules are complex and are one of the many reasons
why it is difficult to develop efficient algorithms that work for the
spell checking tool. Bangla, also known as Bengali, is a language
spoken in Southern Asia by approximately 210 million people and
is​ ​one​ ​of​ ​the​ ​most​ ​spoken​ ​languages​ ​in​ ​the​ ​world​ ​[20].

An Arabic spell checker was created which recognizes common
spelling errors and offers suggestions. It was implemented in
SICStus Prolog on IBM. The main features of the Arabic
language that had to be taken into consideration were
computational morphology- which deals with how to derive a new
word from an existing one by adding a prefix, suffix or infix and
can either change the word category or leave it unchanged. This is
referred to as ‘morpho graphemic rules’ where a word is changed
by changing morphological rules. In addition, Arabic has weak
and Hamza characters which are characters that are changed by
the diacritic of the word. The spell checker has limited its
detection to nonwords. After a word is found, various approaches
are used to correct the error. Shaalan et al.[19] summarizes the
main​ ​five​ ​spelling​ ​errors​ ​in​ ​Arabic​ ​as​ ​follows:

1.​​Reading errors that occur where an individual is capturing data
which is written on paper and misreads some of the data, thus
capturing the wrong data. In addition to misreading the data,
errors​ ​arise​ ​from​ ​lack​ ​of​ ​certain​ ​characters​ ​on​ ​the​ ​keyboard.

2.​​Another common error is through transcription where the
transcriber hears a different thing from what is being said as there
are slight nuances in most of the pronunciation of words which
mean very different things. Other reasons for these kinds of errors
include the presence of various dialects, the use of slang as well as
age.

3.​​Touch typing errors which would usually be from typists who
aren’t very experienced. And this would be due to the positioning
of​ ​the​ ​typist​ ​on​ ​the​ ​keyboard.

4.​​Morphological errors which would arise from a writer who
doesn’t​ ​have​ ​much​ ​experience.

5.​​Editing errors which are due to typing errors i.e. insertion,
delete,​ ​subs.

This brief look at the spellcheckers in existence can give rise to
potential hybrid approaches to spellchecking and also give
evidence to the extent to which statistical and non-statistical

approaches have been successful. Overall, it is important to be
aware of the different techniques/approaches used for
spellchecking as different approaches tackle different aspects of
spellchecking and being aware of these aspects will allow one to
create​ ​a​ ​robust​ ​spellchecker.

3. SYSTEM​ ​DEVELOPMENT​ ​AND
IMPLEMENTATION
This section discusses the software development process followed
while creating the spellchecker, the algorithm and corpus used by
the​ ​tool​ ​as​ ​well​ ​as​ ​the​ ​user​ ​interface​ ​design.

3.1 Software​ ​development
A waterfall software development methodology was followed.
This methodology was mainly chosen based on the lack of
flexibility in the client’s schedule. Had an iterative approach been
chosen, the client would probably have not been available to
evaluate each iteration, thus requirements were gathered at the
beginning of the development cycle. The spellchecker was
created​ ​and​ ​tested​ ​thereafter.

An initial meeting was held with the client where the goal,
requirements and other specifications of the spellchecker were
discussed. It was established in that meeting that the client would
like to have a Google chrome plugin as opposed to a desktop
application. In addition,the client requested that the spellchecker
have automatic error detection. Thus, the in the requirements and
analysis phase, we agreed that the goal/scope of the project would
be a Google Chrome plugin which performs isolated non-word
error​ ​detection​ ​and​ ​does​ ​automatic​ ​error​ ​detection.

In the second phase of the development lifecycle, the interface of
the Google Chrome plugin was designed and evaluated by Dr
Maria Keet, as the client was unavailable. Figure 1 shows the
initial design of the plugin and Figure 2 shows the second design
after receiving feedback from the initial design. In this phase, the
feasibility of the implementation of a chrome plugin was also
investigated. The Java backend proved to be difficult to integrate
with the chrome libraries and API. Due to time constraints, a
desktop application for Windows was created instead. The
interface design of the desktop application is discussed in section
3.4

In the third phase of the project, an error detection module was
created. This module detects erroneous words in isiXhosa and the
error​ ​detection​ ​is​ ​not​ ​affected​ ​by​ ​punctuation.

In the last phase, the tool was tested. A module for testing the
accuracy of the spellchecker was created and this is discussed in
section 4.1. In addition, the HCI component and usability of the
tool were tested, more details are provided about this in section
3.5.

Figure​ ​1​ ​:​ ​Initial​ ​plugin​ ​design

Below is the refined design. It has two text areas, one is for user
input and the other displays errors. This is done in real-time as the
user types the text. In addition, the user can decide to disable the
automatic error detection and use the buttons provided to
spellcheck​ ​text.

Figure​ ​2:​ ​Refined​ ​plugin​ ​design

3.2 Pre-processing
The​ ​isiXhosa​ ​documents​ ​retrieved​ ​from​ ​the​ ​client,​ ​Dr
Mantoa-Masoko​ ​from​ ​the​ ​African​ ​languages​ ​department​ ​at​ ​the
University​ ​of​ ​Cape​ ​Town(UCT)​ ​first​ ​had​ ​to​ ​be​ ​cleaned​ ​and
prepared​ ​for​ ​use​ ​by​ ​the​ ​spellchecker.​ ​This​ ​step​ ​is​ ​important​ ​as​ ​the
documents​ ​used​ ​to​ ​create​ ​the​ ​corpus​ ​directly​ ​affect​ ​the
performance​ ​of​ ​the​ ​spellchecker.​ ​A​ ​cleaner​ ​corpus​ ​leads​ ​to​ ​better
results.​ ​Although​ ​no​ ​spellchecker​ ​is​ ​100%​ ​accurate,​ ​clean​ ​and
large​ ​corpora​ ​improve​ ​the​ ​performance​ ​of​ ​the​ ​spellchecker.

The​ ​data​ ​used​ ​to​ ​build​ ​the​ ​corpus​ ​was​ ​​ ​cleaned​ ​using​ ​the​ ​method
adopted​ ​by​ ​Norman​ ​Pilusa’s​ ​code​ ​for​ ​the​ ​IsiZulu​ ​spellchecker​ ​to
make​ ​the​ ​model​ ​for​ ​the​ ​isiXhosa​ ​spellchecker.​ ​The​ ​IsiZulu
spellchecker​ ​code​ ​could​ ​only​ ​recognize​ ​alphabetical​ ​characters
and​ ​not​ ​punctuation​ ​thus​ ​all​ ​characters​ ​besides​ ​alphabetical
characters​ ​had​ ​to​ ​be​ ​removed.​ ​In​ ​addition,​ ​text​ ​written​ ​in​ ​any
other​ ​language​ ​had​ ​to​ ​be​ ​removed.​ ​A​ ​module​ ​to​ ​perform​ ​this
cleaning​ ​was​ ​created​ ​to​ ​read​ ​the​ ​text​ ​and​ ​scan​ ​each​ ​word​ ​for
characters​ ​other​ ​than​ ​alphabetical​ ​characters​ ​with​ ​the​ ​exception​ ​of
spaces​ ​between​ ​words.​ ​When​ ​the​ ​module​ ​detects​ ​non-alphabetical
characters,​ ​it​ ​deletes​ ​them.

3.3 Non-word​ ​error​ ​detection​ ​model
Once​ ​the​ ​data​ ​is​ ​cleaned,​ ​the​ ​spellchecker​ ​module​ ​takes​ ​in​ ​the
words​ ​and​ ​creates​ ​character​ ​trigrams.​ ​A​ ​character​ ​trigram​ ​is​ ​a​ ​set
of​ ​consecutive​ ​characters​ ​taken​ ​from​ ​a​ ​string​ ​e.g.​ ​if​ ​the​ ​string​ ​is
“molweni”​ ​the​ ​module​ ​would​ ​produce​ ​“mol”,​ ​​ ​“olw”​ ​,​ ​“lwe”,
“wen”​ ​and​ ​“eni”.​ ​These​ ​trigrams​ ​are​ ​then​ ​stored​ ​with​ ​their
corresponding​ ​frequency​ ​from​ ​the​ ​text​ ​documents/corpus.​ ​The
probability​ ​of​ ​a​ ​trigram​ ​existing​ ​was​ ​calculated​ ​using​ ​the​ ​formula
below​ ​where​ ​w​i​ ​​is​ ​the​ ​word​ ​and​ ​N​ ​is​ ​the​ ​total​ ​number​ ​of​ ​words​ ​in
the​ ​corpus.

𝑃 ​ ​(​ ​𝑤 ​i​​ ​/𝑁 ​ ​)​ ​=​ ​(𝑤 ​i​𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/​ ​𝑁 ​ ​𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐y)

The​ ​trigram​ ​frequency​ ​is​ ​then​ ​compared​ ​with​ ​a​ ​predetermined
threshold​ ​during​ ​error​ ​detection.​ ​If​ ​the​ ​frequency​ ​of​ ​the​ ​trigram​ ​is
below​ ​the​ ​threshold,​ ​the​ ​world​ ​is​ ​flagged​ ​as​ ​incorrect​ ​otherwise,
the​ ​word​ ​is​ ​flagged​ ​as​ ​correct.​ ​This​ ​means​ ​that​ ​a​ ​bigger​ ​corpus
gives​ ​better​ ​results​ ​as​ ​the​ ​error​ ​detection​ ​module​ ​is​ ​based​ ​on​ ​the
frequency​ ​of​ ​the​ ​trigrams.

3.4 User​ ​interface​ ​design
The design process followed was the expert-mindset design where
the end user is not a part of the design process but are rather
asked to evaluate the design of the software and give feedback
and​ ​other​ ​ideas​ ​on​ ​how​ ​to​ ​improve​ ​the​ ​design.

This project aimed to create a user interface design that was as
simple as possible in order to avoid overwhelming and cluttering
the user. To evaluate the usability and look of the spellchecker, a
usability study was conducted. A group of participants that
comprised of students at the University of Cape Town who study
isiXhosa at university level or have studied IsiXhosa until grade
12 were asked to partake in the usability testing. The testing
session was 30 minutes long. During this time, users were
observed as they used the tool to see how quickly they could
understand the tasks to be completed and how they proceeded to
begin and complete the task. Users were allowed to give feedback
in​ ​real-time​ ​as​ ​they​ ​used​ ​the​ ​tool​ ​during​ ​the​ ​study.

The feedback from the participants with regards to the aesthetics
and​ ​usability​ ​of​ ​the​ ​tool​ ​were​ ​as​ ​follows:

● Users expected the spellcheck button to show all the
incorrect words as opposed to showing one incorrect
word​ ​after​ ​the​ ​other.

● Users​ ​wanted​ ​automatic​ ​error​ ​detection
● Users found the ignore once and ignore all buttons

confusing​ ​thus​ ​tool-tips​ ​were​ ​added​ ​to​ ​the​ ​buttons
● Users​ ​found​ ​it​ ​hard​ ​to​ ​open​ ​files​ ​from​ ​the​ ​machine.

From this feedback, the spellchecker was refined and now shows
all errors within the click of a button, it has tool tips which explain
the functionality of the spellchecker and has minimized user
clicks​ ​to​ ​access​ ​functionalities.

Figure 3 shows the initial design of the first spellchecker while
Figure 4 shows the refined design after user evaluation and
feedback.

Figure​ ​3:​ ​Initial​ ​standalone​ ​application​ ​design

Figure​ ​4:​ ​Refined​ ​standalone​ ​application​ ​design
3.5 Testing
The usability of the spellchecker was tested using a usability study
comprising of 9 students. Participants were asked to complete
tasks using the features on the spellchecker. Once these tasks have
been completed, they were asked to answer a set of questions.
These tasks and questions were made available using Google
forms which allowed the participants to remain anonymous.The
set of tasks and questions asked during the study can be found in
Appendix​ ​A.

The tasks chosen made it possible to evaluate the users’
understood the interface design and the components thereof as
participants were observed while using the tool and were also able
to ask questions during the study if they experienced any
difficulty. Only 1 person out of the 9 participants said that they
found it difficult to use the tool. Overall, the participants were
comfortable with the tool and said that should they write isiXhosa
text(s),​ ​they​ ​would​ ​use​ ​the​ ​tool.

4. EXPERIMENT​ ​DESIGN​ ​AND
EXECUTION
This section describes entities which were altered when creating
the​ ​spellchecker​ ​in​ ​order​ ​to​ ​determine​ ​​ ​entities​ ​that​ ​work​ ​best.

4.1 N-grams
Character trigrams, quad-grams and quin-grams were created
from the word corpus received from Dr Mantoa-Masoko (the
client).A trigram is a set of 3 consecutive characters, a quadgram
is a set of 4 consecutive characters and a quingram is a set of 5
consecutive characters. For example, if the input word is
“Molweni”, for trigrams the output would be “Mol”, “olw”,
“lwe”, “wen”, “eni”; for quad-grams “Molw”, “olwen”, “lwen”
and for quin-grams “Molwe”, “olwen”, “lweni”. In addition to
storing these tree structures , the frequency of each n-gram was
stored as a key-value pair. The threshold was also altered for each
of these tree structures respectively to see which tree structure
would produce the highest accuracy. Table 1 shows the tree
structure,​ ​its​ ​threshold​ ​and​ ​the​ ​spellchecker’s​ ​accuracy.

Tree​ ​structure Threshold Accuracy

Trigrams 0.002 79.4

 0.003 79.3

 0.004 79.3

Quin-grams 0.002 79.2

 0.003 79.2

 0.004 79.2

Quad-grams 0.002 79.2

 0.003 79.2

 0.004 79.2

Table​ ​1:​ ​Accuracy​ ​Testing

5. RESULTS​ ​AND​ ​FINDINGS
5.1 Results​ ​analysis​ ​and​ ​Discussion
This research aimed to investigate the accuracy of the an error
detector created using n-grams in comparison to an isiZulu error
detector created using the same methodology. The error detector
for isiXhosa achieved an accuracy of 79% indicating that a
different​ ​methodology​ ​should​ ​be​ ​used.
The usability study was conducted with 9 participants. The
intended number of participants was 15-20 as this would have
allowed for more feedback from participants. There seemed to be
miscommunication and misunderstandings when conducting the
study as most users had to ask questions to clarify the instructions.
This showed that the study needs to be as unambiguous as
possible to avoid gathering biased feedback from the participants.
Furthermore, an iterative approach with the users as opposed to
the client could have been a more viable approach. The users are

generally almost always available thus the design could have been
much​ ​better.

The statistical approach for the isiXhosa spellchecker performs
poorly in comparison to the isiZulu spellchecker. This approach
was chosen as it was used by Ndaba et al. [13] for the isiZulu
spellchecker and performed very well giving an accuracy of 89%.
With isiXhosa and isiZulu belonging to the same language group,
the Nguni group, and have similarities in their language structure,
it was expected that the statistical approach would work well for
both languages but that is not the case. Perhaps a larger corpus
would​ ​have​ ​produced​ ​better​ ​results

6. CONCLUSION
Bantu languages generally lack online tool support which in turn
perpetuates the scarcity of content and the digitization of text in
Bantu languages online. The aim of this project was to create a
data-driven statistical based model to perform isolated non-word
error detection for an isiXhosa spellchecker. This tool was
successfully created as a desktop application and achieves an
accuracy of 79%. A secondary aim of this project was to
investigate whether the isiXhosa spellchecker can achieve an
accuracy similar to that of the isiZulu spellchecker. The isiXhosa
spellchecker gave a lower accuracy or 79% in comparison with
the isiZulu spellchecker which has an accuracy of 89%.The results
recorded here are preliminary and can be used as a guide for
further​ ​development​ ​of​ ​spellcheckers​ ​for​ ​Bantu​ ​languages.

7. FUTURE​ ​WORK
Automatic error detection would be a good feature to add to the
spellchecker as it would reduce the number of buttons the user
would have to click in order to spellcheck. Also, a Google
Chrome plugin could be created using a different language such as
Ruby or Python as they have good library support and would
possibly be easier to integrate with the Chrome libraries. The
spellchecker does not provide error correction as the scope was
limited​ ​to​ ​isolated​ ​non-word​ ​error​ ​detection.

8. ACKNOWLEDGMENTS
A special thank you to my supervisor, Dr Maria Keet for giving
me support and advice throughout this project, my second reader,
Prof. Sonia Berman for her critique and advice on this project, My
client, Dr Mantoa-Masoko for providing the necessary documents
for the spellchecker and the participants for their evaluation and
feedback​ ​during​ ​my​ ​usability​ ​study.

9. REFERENCES
[1] Akinde, T.A., 2007. Digitizing Africa local content: The way

forward. ​Continental Journal of Information Technology​,​1​,
pp.44-50.

[2] Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B.,

Ackerman, M.S., Karger, D.R., Crowell, D. and Panovich,
K., 2015. Soylent: a word processor with a crowd inside.
Communications of the ACM, 58(8), pp.85-94.
DOI=10.1145/2791285

[3] Bosch,​ ​S.E.,​ ​Pretorius,​ ​L.​ ​and​ ​Jones,​ ​J.,​ ​2007.​ ​Towards
machine-readable​ ​lexicons​ ​for​ ​South​ ​African​ ​Bantu
languages.​ ​​Nordic​ ​Journal​ ​of​​ ​​African​ ​Studies​ ​​16(2)​ ​131-145

[4] De Schryver, G.M. and Prinsloo, D.J., 2004. Spellcheckers

for the South African languages, Part 1: The status quo and
options for improvement. ​South African Journal of African
Languages​,​24​(1),​ ​pp.57-82.

[5] F.J.​ ​Damerau,​ ​“A​ ​technique​ ​for​ ​computer​ ​detection​ ​and
correction​ ​of​ ​spelling​ ​errors”,​ ​communication​ ​of​ ​ACM,​ ​7(3),
171-176,​ ​1964.

[6] Gibbon, D., Bow, C., Bird, S. and Hughes, B., 2004.
Securing Interpretability: The Case of Ega Language
Documentation.​ ​In​ ​LREC.

[7] Grover,​ ​A.​ ​S.,​ ​Calteaux,​ ​K.,​ ​van​ ​Huyssteen,​ ​G.,​ ​&​ ​Pretorius,
M.​ ​(2010,​ ​October).​ ​An​ ​overview​ ​of​ ​HLTs​ ​for​ ​South​ ​African
Bantu​ ​languages.​ ​In​ ​Proceedings​ ​of​ ​the​ ​2010​ ​Annual
Research​ ​Conference​ ​of​ ​the​ ​South​ ​African​ ​Institute​ ​of
Computer​ ​Scientists​ ​and​ ​Information​ ​Technologists​ ​(pp.
370-375).​ ​ACM.

[8] Jackie Jones , Kholisa Podile & Martin Puttkammer (2005)
Challenges relating to standardization in the development of
an​ ​isiXhosa​ ​spelling​ ​checker,​ ​South​ ​African​ ​Journal​ ​of

African​ ​Languages,​ ​25:1,​ ​1-10​ ​DOI=
http://dx.doi.org/10.1080/02572117.2005.10587244

[9] Martin,​ ​J.H.​ ​and​ ​Jurafsky,​ ​D.,​ ​2000.​ ​Speech​ ​and​ ​language
processing.​ ​​International​ ​Edition​,​710​.

[10] Maniacky,​ ​J.​ ​2003.​ ​Umqageli​ ​(Automatic​ ​identification​ ​of
Bantu​ ​languages).​ ​http://www.bantu-languages.
com/en/tools/identification.php​ ​(Last​ ​accessed:​ ​26​ ​April
2003).

[11] Karen​ ​Kukich.​ ​1992.​ ​Techniques​ ​for​ ​automatically​ ​correcting
words​ ​in​ ​text.​ ​ACM​ ​Comput.​ ​Surv.​ ​24,​ ​4​ ​(December​ ​1992),
377-439.​ ​DOI=​http://dx.doi.org/10.1145/146370.146380

[12] Keet​ ​C.M.,Khumalo,L​ ​On​ ​the​ ​verbalization​ ​patterns​ ​of

part-whole​ ​relations​ ​in​ ​isiZulu.​ ​​Proceedings​ ​of​ ​the​ ​9th
International​ ​Natural​ ​Language​ ​Generation​ ​conference​ ​2016
(INLG’16)​,Edinburgh,​ ​Scotland,​ ​Sept​ ​2016.​ ​ACL,​ ​174-183​

[13] Ndaba​​ ​​B.,​ ​Suleman,​ ​H.,​ ​Keet,​ ​C.M.​ ​and​ ​Khumalo,​ ​L.,​ ​2016,

May.​ ​The​ ​Effects​ ​of​ ​a​ ​Corpus​ ​on​ ​isiZulu​ ​Spellcheckers​ ​based
on​ ​N-grams.​ ​In​ ​IST-Africa​ ​Week​ ​Conference,​ ​2016​ ​(pp.
1-10).​ ​IEEE.​ ​DOI:​ ​10.1109/ISTAFRICA.2016.7530643

[14] Nkomo,​ ​D.,​ ​2015.​ ​Developing​ ​a​ ​dictionary​ ​culture​ ​through

integrated​ ​dictionary​ ​pedagogy​ ​in​ ​the​ ​outer​ ​texts​ ​of​ ​South
African​ ​school​ ​dictionaries:​ ​the​ ​case​ ​of​ ​Oxford​ ​Bilingual
School​ ​Dictionary:​ ​IsiXhosa​ ​and​ ​English.​ ​Lexicography,
2(1),​ ​pp.71-99.

[15] Pienaar,​ ​W.​ ​and​ ​Snyman,​ ​D.P.,​ ​2011.​ ​Spelling​ ​checker-based

language​ ​identification​ ​for​ ​the​ ​eleven​ ​official​ ​South​ ​African
languages.​ ​In​ ​Proceedings​ ​of​ ​the​ ​21st​ ​Annual​ ​Symposium​ ​of
Pattern​ ​Recognition​ ​of​ ​SA,​ ​Stellenbosch,​ ​South​ ​Africa​ ​(pp.
213-216).

[16] Prinsloo​ ​D.J.​ ​and​ ​de​ ​Schryver,​ ​G.M.,​ ​2003.​ ​Non-word​ ​​error

detection​ ​incurrent​ ​South​ ​African​ ​spellcheckers.​ ​​Southern

http://dx.doi.org/10.1080/02572117.2005.10587244
http://dx.doi.org/10.1145/146370.146380

African​ ​Linguistics​ ​​and Applied Language​ ​​Studies​,​21​(4),
pp.307-326.

[17] Randhawa,​ ​E.​ ​S.​ ​K.,​ ​&​ ​Saroa,​ ​E.​ ​C.​ ​S.​ ​(2014).​ ​Study​ ​Of​ ​Spell
Checking​ ​Techniques​ ​And​ ​Available​ ​Spell​ ​Checkers​ ​In
Regional​ ​Languages:​ ​A​ ​Survey.​ ​International​ ​Journal​ ​For
Technological​ ​Research​ ​In​ ​Engineering,​ ​2(3).

[18] Scannell,​ ​K.P.,​ ​2011.​ ​Statistical​ ​unicodification​ ​of​ ​African
languages.​ ​Language​ ​resources​ ​and​ ​evaluation,​ ​45(3),​ ​p.375.

[19] Shaalan,​ ​K.,​ ​Allam,​ ​A.​ ​and​ ​Gomah,​ ​A.,​ ​2003.​ ​Towards
automatic​ ​spell​ ​checking​ ​for​ ​Arabic.​ ​In​ ​​Proceedings​ ​of​ ​the
4th​ ​Conference​ ​on​ ​Language​ ​Engineering,​ ​Egyptian​ ​Society
of​ ​Language​ ​Engineering​ ​(ELSE),​ ​Cairo,​ ​Egypt​(pp.​ ​21-22).

[20] UzZaman,​ ​N.​ ​and​ ​Khan,​ ​M.,​ ​2006.​ ​​A​ ​comprehensive​ ​Bangla
spelling​ ​checker​.BRAC​ ​University.

Appendix​ ​A
Tasks

1. Enter​ ​a​ ​full​ ​sentence​ ​in​ ​isiXhosa​ ​of​ ​your​ ​choice​ ​and​ ​check​ ​if​ ​it​ ​has​ ​any​ ​errors​ ​using​ ​the​ ​tool.
2. Enter​ ​2-4​ ​sentences​ ​in​ ​isiXhosa​ ​and​ ​check​ ​them​ ​for​ ​errors.​ ​Ignore​ ​all​ ​the​ ​errors​ ​flagged​ ​afterwards,​ ​if​ ​any
3. Open a word or text document from your machine and spellcheck it then clear the contents of the textbox after. The document

can​ ​be​ ​found​ ​on​ ​file->​ ​desktop->spellcheck​ ​->​ ​XhosaText3
4. Enter​ ​a​ ​paragraph​ ​in​ ​isiXhosa​ ​and​ ​ignore​ ​an​ ​error
5. Open the help functionality. Do you feel as though it explains how to use the spellchecker well enough? Give a brief comment on

your​ ​answer

Questions
1. How​ ​easily​ ​were​ ​you​ ​able​ ​to​ ​complete​ ​the​ ​tasks​ ​in​ ​section​ ​1?
2. Was​ ​the​ ​tool​ ​intuitive?
3. If​ ​you​ ​answered​ ​no​ ​to​ ​the​ ​question​ ​above,​ ​please​ ​state​ ​what​ ​you​ ​was​ ​confusing​ ​or​ ​not​ ​intuitive​ ​about​ ​the​ ​tool
4. How​ ​complex​ ​did​ ​you​ ​find​ ​the​ ​system
5. Which​ ​features​ ​would​ ​you​ ​like​ ​to​ ​be​ ​added​ ​to​ ​the​ ​spellchecker​ ​and​ ​why?
6. Which​ ​features​ ​would​ ​like​ ​to​ ​be​ ​removed​ ​from​ ​the​ ​spellchecker​ ​and​ ​why?
7. Would​ ​you​ ​use​ ​this​ ​spellchecker​ ​frequently?​ ​Please​ ​comment​ ​on​ ​your​ ​answer
8. Did​ ​the​ ​spellchecker​ ​meet​ ​your​ ​needs​ ​as​ ​a​ ​user?Please​ ​explain​ ​your​ ​answer​ ​briefly.
9. The​ ​spellchecker​ ​is​ ​approximately​ ​85%​ ​accurate.​ ​Do​ ​you​ ​think​ ​that​ ​is​ ​satisfactory​ ​or​ ​should​ ​it​ ​be​ ​higher?
10. How​ ​likely​ ​are​ ​you​ ​to​ ​use​ ​this​ ​tool​ ​when​ ​writing​ ​isiXhosa​ ​text?​ ​Please​ ​give​ ​a​ ​brief​ ​explanation.
11. Do​ ​you​ ​think​ ​a​ ​Google​ ​chrome​ ​plugin​ ​would​ ​be​ ​a​ ​better​ ​tool​ ​to​ ​use​ ​than​ ​a​ ​standalone​ ​desktop​ ​application?​ ​Why?
12. Please​ ​add​ ​any​ ​further​ ​comments​ ​with​ ​regards​ ​to​ ​the​ ​accuracy​ ​and​ ​look​ ​of​ ​the​ ​spellchecker​ ​if​ ​you​ ​have​ ​any

