

Computer Science Honours
Final Paper

2017

Title: Honours Lab Locker Controller

Author: Norman Pilusa

Project Abbreviation: Lockit

Supervisor(s): Gary Stewart

Category Min Max Chosen
Requirement Analysis and Design 0 20 15
Theoretical Analysis 0 25 0
Experiment Design and Execution 0 20 0
System Development and Implementation 0 15 15
Results, Findings and Conclusion 10 20 10
Aim Formulation and Background Work 10 15 10
Quality of Paper Writing and Presentation 10
Quality of Deliverables 10
Overall General Project Evaluation (this section
allowed only with motivation letter from supervisor)

0 10

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Lockit: Honours Lab Locker Controller

Norman Pilusa
Department of Computer Science

University of Cape Town

Rondebosch 7701

Cape Town, South Africa

plsnor001@myuct.ac.za

ABSTRACT

Public areas like universities o�en have lockers for students to store
their belongings. However, there is only a limited number of lockers
which is o�en less than the number of students needing them. �is
imbalance requires an administration process that will ensure that
everyone gets a chance to use the lockers. �is paper presents a
webserver for managing lockers installed in the computer science
honours lab at the University of Cape Town. �e webserver is
developed as a so�ware component of an embedded system solution.
�e webserver forms a middle ware between user interfaces and a
Raspberry Pi that controls the locking mechanisms installed on the
lockers.

KEYWORDS

Application Programming Interface (API), Uniform Resource Loca-
tor (URL), Webserver, Security

1 INTRODUCTION

�e University of Cape Town's computer science department has
installed new lockers for its honours students. �e honours class
in 2017 was 60 and it is expected to increase every year.

1.1 Problem Statement

Currently the number of lockers installed is 30. �irty lockers are
not enough for the honours class. �is makes it necessary to have
a management system for the lockers so that every student gets
an opportunity to use a locker. Managing means allocating time
to students to use the lockers, monitoring over use and penalizing
students accordingly.

1.2 Solution Outline

A low cost embedded system solution was built to manage and
monitor the use of the lockers. �e system is made up of three
components: a Raspberry Pi that controls locking mechanism on
the lockers, a webserver for managing and monitoring uses, and
user interfaces that students interact with. �e break-down of the
solution can be seen in �gure 1. �e components were developed
using the embedded design life cycle.

Figure 1: Components of the solution

Figure 1 shows the break-down of the solution into components.
�e arrows in the diagram show direction of communication or
requests. �e diagram is a high level representation of the �nal
system. Each component especially the webserver has more com-
ponents than shown; these are detailed in separate reports. �is
paper describes the design and implementation of the webserver.

1.3 Report Overview

�e rest of this paper is structured as follows. Section 2 gives a
background of the problem and the �nal solution. Section 3 gives
a description of the embedded design life cycle followed when
developing the system. Section 4 gives a detailed analysis of the
requirements of the webserver. Section 5 gives the design of the
components that constitute the webserver. Section 6 outlines the

tools used to develop the webserver. Section 7 presents the tests
conducted and the results obtained. Section 8 discusses the results
of the tests. Section 9 presents related work. Finally section 10
concludes with a discussion of the webserver and future work.

2 BACKGROUND

�e computer science honours lab at the University of Cape Town
has recently installed 30 lockers. �ese lockers do not have locking
mechanisms and handles to open them. �is is because traditional
locking mechanism will change the aesthetic appeal of the lockers.
�ere are two main issues with the current lockers:

(1) �e absence of locking mechanisms de�les the main pur-
pose of lockers

(2) �e number of lockers installed is half the number of stu-
dents doing honours. �is means that students will have
to share lockers.

�e computer science honours lab does not have a full time admin-
istrator. �is is an additional problem because lockers have to be
fairly distributed amongst students. Existing locker administration
systems allocate lockers for a period of a semester to a year. �e
problem with this arrangement is that not all students use their
allocated locker daily. Allocating daily makes administration an
even lengthier task.

�e Lockit project proposes a solution which allows users to use
a mobile application, website, RFID or touch screen interface to
reserve and use the lockers. A Raspberry Pi is used to control
the locking mechanism installed on the lockers. �e Raspberry Pi
runs application programming interfaces for controlling the locking
mechanism. Adding other computational tasks would make the
system respond poorly to requests. �is paper investigates the
feasibility of using a webserver to integrate the cross platform
applications with the embedded system. �e aim of the proposed
solution is to use low cost hardware to manage the lockers in the
honours lab without a�ecting the aesthetic appeal of the lockers.
�e webserver will handle most of the computational overheads
and the Raspberry Pi will handle opening of the correct locker as
requested by the webserver.

3 SOFTWARE DEVELOPMENT
METHODOLOGY

�e design of an embedded system requires hardware and so�ware
to be developed in parallel. It is for this reason that this project was
developed using the embedded design life cycle [2]. Figure 2 shows
a diagram of the embedded design life cycle. �e embedded design
life cycle has seven phases. �e rest of this section gives details of
how each of the seven phases was followed.

Figure 2: Embedded design life cycle diagram

3.1 Product Speci�cations

�e �rst phase of the embedded life cycle starts with product spec-
i�cation. In this phase, the product owners of the lockers gave
speci�cations for the webserver. �e speci�cations were collected
through weekly meetings. �e details of the collected speci�cations
are in section 4.

3.2 HW/SW partition

�e second phase of the embedded life cycle is so�ware and hard-
ware partitioning. In this project the hardware partition consists of
the Raspberry Pi and locking mechanisms. �e user interfaces and
webserver make up the so�ware partition.

3.3 Iteration and implementation

�e third phase of the embedded design life cycle represents the
early design work before the hardware and so�ware partitions
diverged. Even though so�ware components were de�ned, there
was plenty of leeway to move these boundaries as more of the
design constraints were understood and modeled. In this phase
the design was �uid so, it was decided on possible inputs to the
webserver and what the outputs should be for use cases.

3.4 Detailed HW/SW design

In this fourth phase, the hardware and so�ware partitions were
developed in parallel. �e webserver was designed using use cases.
A use case would be speci�ed together with its inputs and outputs.
A detailed design of the webserver is in section 5.

3.5 HW/SW integration

�e hardware and so�ware integration phase did not need special
tools because of the way the system was modularized. De�ning
expected inputs and outputs in the iteration and implementation
phase made this phase easier for the di�erent components. In
this phase the three components (see �gure 1) are connected to
communicate with each other.

2

3.6 Acceptance testing

�e sixth phase is testing of the �nal product. Testing the web-
server was mostly based on ensuring security; this is because the
webserver is a single point of failure. If it fails, then the safety of
the lockers would be compromised. More on the details of tests and
results are in section 7.

3.7 Maintenance and upgrade

In this phase of the embedded life cycle, the �nal product will have
to be maintained to ensure continuous operation. We have not
reached this stage, however the webserver has been designed to
keep logs for anyone who may need to upgrade the �nal product.
�e code for the webserver has been extensively modularized and
commented to make it easy to upgrade. �e webserver has also
been designed to give precise details of any errors that may arise.
�e development tools used (as will be detailed in section 6) are
freely available and have a large developer community to support
future developers of the system.

4 REQUIREMENTS ANALYSIS

�is section presents the requirements gathered in the �rst phase
of the development cycle as understood by both the development
team and the product owners. �e requirements are as follows:

4.1 Cancel reservation

�e users must be able to cancel a reservation if they need to.

4.2 Email noti�cation

�e webserver should notify users when their locker is opened.
�is should be added as a security feature to minimize the�.

4.3 Locker con�guration

�e administrator should be able to add,update or remove lockers
from the system. �is would be required during maintenance or
when scaling.

4.4 Penalties

�e webserver should penalize users that keep the lockers longer
than they reserved them for.

4.5 Reservation modi�cations

�e users must be able to modify their reservation times. �is can
only happen if the user has not exceeded the maximum allocated
time to use a locker and if there is no booking for that particular
locker.

4.6 Reserve locker

�e users of the lockers must be able to reserve a locker for a period
of time. �e webserver has to ensure that users use a locker that
they reserved. Lockers must only be available for the duration of a
reservation.

4.7 Time allocation

�e webserver should be able to dynamically calculate the maxi-
mum time a user can use a locker. �is should be based on the total
number of registered students, total number of lockers, previous
requests and uses for lockers.

4.8 University authentication

�e server must authenticate users using the same authentication
method used by the university. �is includes card authentication
and user name and password authentication. �e user name and
passwords must not be stored on the server.

4.9 Unlock locker

�e webserver has to communicate with the Raspberry Pi API to
open a locker. Furthermore, the webserver must ensure that users
only open a locker that they reserved. �us preventing users from
opening other user's lockers.

4.10 User information

�e administrator should be able to add, update or remove stu-
dents allowed to use the system. Only students doing honours in
computer science should be able to use the system.

4.11 View logs

�e administrator should be able to see, who opened which locker
and when. �is is for security reasons to track user activity.

4.12 View reservations

�e administrator alone, must be able to see all reservations made.
Any user that is not an administrator must not be able to do this.

5 DESIGN

�ewebserver is made up of APIs and a database. �is section gives
detailed designs of both the database and the APIs.

5.1 Application Programming Interfaces

�e purpose of an API is to specify how so�ware components
interact. �e design of the APIs that make up the webserver is
shown in �gure 3. In �gure 3, the �rst line in Bold is the name of
the API. Below the name of the API is the URL for accessing that

3

particular API. Below the URL is all the methods allowed by the API;
the methods in red can only be accessed by the administrator. �e
methods in blue can be accessed by anyone that is authenticated.
Below the methods is the response data returned by the API when
a GET request is received. �e data returned has a type speci�ed in
bold. For POST and PUT requests all APIs respond with an empty
Python dictionary.

�e arrows represent the relationships between the APIs. �ere are
two kinds of relationships in the design diagram, these are “have
one” and “have many”. �e “have one” relationship is interpreted
as a link to a single API object. �e “have many” relationship is
interpreted as a link to one or more API objects. For example a
Locker can be linked to many LLogs. So there could be many LLogs
links/URLs that have information about the same Locker. Another
example, a Student is linked to only one Reservation. In this last
case, there is only one Reservation link/URL for a Student.

Figure 3: Design of APIs

5.1.1 Lockers. �e Lockers API is responsible for synchronizing
information of lockers. �is API is only accessible to the administra-
tor. It has four methods, GET, PUT, POST, and DELETE. It is used
to con�gure lockers. Label is used to uniquely identify a locker. �e
administrator can set this to anything using a POST/PUT request.

5.1.2 LLogs. �e LLogs API is responsible for keeping record of
requests to open a locker. It is only accessible to the administrator
via the GET method. �e value for user is a UCT student number.
Locker is the label of a locker, date is the date and time when the
action was performed. Status is an indication of whether the action
was successful or denied. �is API responds with all records of
unlocks.

5.1.3 RLogs. �e RLogs API is responsible for keeping record of
reservations. �e records stored on this API are never deleted. �is
API is also used calculate the maximum time to allocate lockers
and the penalties that users incurred. It is only accessible to the
administrator via the GET method. Penalty indicates the hours a
user is penalized for next reservation.

5.1.4 Reservations. �e Reservations API is responsible for ac-
tive reservations. �is includes creating, deleting and modifying
the reservation. �is API has four methods which are accessible to
any role, GET, POST, PUT, and DELETE. �e value for starts is a
date and time which indicate the start of a reservation. �e value
of ends is also date and time except that here it indicates the end
time of a reservation.

5.1.5 Students. �e Students API is responsible for queries re-
lated to student information. It allows for four methods, GET which
is accessible by any role and POST, PUT and DELETE which can
only be accessed by the administrator. �e value for maximum is
the calculated maximum hours that a user can book a locker for
that day.

5.1.6 Unlock. �eUnlock API is responsible for communicating
with the locker raspberry pi that controls the lockers. �is API only
has a GET method which is accessible to any role. �e response of
this API is the log that was created in the LLogs API. However this
is raw data and not a link.

5.2 Database

�e database stores information needed by the server's APIs. �e
schema of the database is shown in �gure 4.

Figure 4: Database design

5.2.1 Allocations. �e allocations table stores the total number
of reservation requests made on any day. �e data stored in this
table is used to calculate the maximum time users get to use a locker,
for the same day the following week.

5.2.2 Lockers. �e lockers table stores locker information.�e
information stored is simply the locker label. �is table helps with
con�guring lockers on the server so that they are correctly mapped
to the physical lockers.

5.2.3 Locker logs. �e locker logs table stores information about
accesses to lockers. It stores the locker, user that tried to open the
locker, the date, and status which indicates whether the locker
opened or not. �e purpose of this table is to help trace lost goods
in case someone opens a locker maliciously.

4

5.2.4 Reservations. �e reservations table stores information
about a reservation. �e information includes: user (from the users
table), locker (from the locker table), start time and end time of the
reservation. When a reservation ends, it gets removed from this
table. �e purpose of this table is to store active reservations.

5.2.5 Reservation logs. �e reservation logs table stores infor-
mation about all reservationsmade. the information stored includes:
reservation (orphaned from reservations table), penalty acquired,
user, end time of reservation, time the reservation was closed. �e
penalty could be made dynamic but the cost of constant calculation
is higher than a once of write.

5.2.6 Users. �is table stores user information. �e information
includes student number, name, surname, email and role (adminis-
trator or not).

6 IMPLEMENTATION

�is section presents the tools used to implement the design in the
previous section. �e webserver is running an apache webserver
so�ware installed on an Ubuntu virtual machine.

6.1 Application Programming Interfaces

�e APIs were implemented with Flask-RESTful [5]. Flask-RESTful
is an extension of �ask (a Python micro-framework) that adds sup-
port for building Representational State Transfer (REST) APIs. Flask
is based on the Python programming language. Python has plenty
of libraries and user community to support future developments
on the webserver [9]. Python is also widely used for Internet of
�ings[4], which makes it even more relevant for our project.

6.2 Database

�e database has been implemented using MySQL. MySQL is a
popular open source database that has been optimized for web based
applications [8]. �e popularity of MySQL makes it have a large
user community to assist with any issues that may be encountered
during the lifetime of the webserver. MySQL has been designed
to achieve high levels of scalability, availability and performance
using low cost commodity hardware [8]. �e database is managed
with SQLAlchemy. SQLAlchemy is a Python SQL toolkit and Object
Relational Mapper that abstracts away SQL queries [1].

6.3 Penalty calculation

�e penalties that users incur are in hours. For every 45 minutes
that a user is late they lose 1 hour of the next booking. �e �nal
count of penalties incurred is returned when an unlock request is
received. When a late user opens their locker, the reservation is
gets deleted. �is only happens when a user is late.

6.4 Security

�e security of the server has a two parts, username and password
authentication and token authentication. �e username and pass-
word are used to request an authentication token. �e details of
the two parts are as follows:

6.4.1 Card authentication. �e webserver also uses a UCT ac-
cess card number to authenticate users. When an access card num-
ber is provided by the Raspberry Pi, the server sends the card
number to an access card API. If card number is authenticated, the
webserver generates a token that is then used to make subsequent
requests.

6.4.2 Token authentication. �e university's LDAP (Lightweight
Directory Access Protocol) is used to authenticated a user; a to-
ken is then generated using the TimedJSONWebSignatureSerializer
function in Python. �e token generated only lasts for an hour. Af-
ter an hour, users have to request another token. An administrator
token has di�erent privileges from a user's token. �e administrator
token only lasts for 30 minutes.

6.4.3 Username and password authentication. �e username and
password are used to obtain a token. �is uses �ask 's HTTP Basic
Auth module [5]. When a user enters a username and password,
the webserver queries the provided detail on the university's Light-
weight Directory Access Protocol (LDAP). �e user's passwords are
not stored on the server. LDAP simply searches for the user and
returns information about the user[7]. �e information returned is
then used to determine whether a user is authorized or not. �e in-
formation returned includes username, surname, faculty, academic
career, courses, a�liation with the university and student status.

6.5 Time allocation

�e time allocation is calculated to ensure that every user gets an
opportunity to use a locker. �e time allocated to students varies
depending on use and demands for lockers. �e time allocation is
calculated using the equation below.

Allocation =
(24 × lockers × students)

requests
− used − penalties (1)

where:
lockers = �e number of lockers installed
students = �e number of students registered to use the lockers
requests = �e total requests received on the same day last week
used = �e hours used for the day by the student
penalties = �e number of penalties from previous reservation
�e 24 is the hours in a day.

7 EVALUATION AND RESULTS

�is section presents the tests conducted and the results obtained.
5

7.1 Acceptance tests

�ese test were performed to test whether the webserver has met
the speci�cations in section 4. �e manner of conducting these
tests involved sending requests to the webserver and checking
the response if it is as expected. Figure 5 shows an example of a
response received from the webserver. A summary of the rest of
the results for such tests is presented in table 1.

Figure 5: Unlock locker

Figure 5, shows the response of the webserver when a GET request
is sent to unlock a locker. �e response was generated by sending
the following request:
GET h�ps://lockit.cs.uct.ac.za/api/v1/plsnor001/unlock. �is re-
quires the student with student number plsnor001 to have an active
reservation. If this is not the case, the response shown in �gure 6
will be returned.

Figure 6: Failed Unlock request

Table 1: Functional Requirements table

Functionality Pass/Fail
Reserve locker Pass
Unlock locker Pass
View reservations Pass
University authentication Pass
View logs Pass
Cancel reservation Pass
User information Pass
Locker con�guration Pass
Reservation modi�cations Pass
Time allocation Pass
Email noti�cation Pass
Penalties Pass
Card Authentication Pass

Table 1 shows impressive results, the webserver has met the speci�-
cations. �ese results were not enough to determine the feasibility
of the webserver. �e rest of this section presents two tests that
validate the feasibility of the webserver.

7.2 Load tests

�e load tests, were conducted to test the amount of time it takes
the webserver to respond to a given number of requests. �ese tests
were tested for 100 requests sent by 25 di�erent concurrent users.
Each user doing 100/25 = 4 sequential requests. �e last two tests
were tested for 5 requests by 2 di�erent concurrent administrators.
One administrator makes 3 sequential requests and the other makes
two. �e tests and results are as follows:

7.2.1 Available lockers. �is test checks the response time of the
server when a user requests a list of free lockers. Figure 7 shows
how the response time of the server changes as the number of
requests increases.

Figure 7: Available lockers

6

�e server takes about 150ms to respond to a single request for free
lockers. It takes between 400ms and 500ms for requests between
10 and 95. Overall the server takes about 1.1 seconds to serve 100
requests for free lockers.

7.2.2 Reserve locker. �is test checks the response time of the
server when a user makes a reservation. Figure 8 shows how the
response time of the server changes as the number of requests
increases.

Figure 8: Reserve locker

�e response time for making a reservation increases linearly with
increasing number of requests. It takes the server 40ms to respond
to a single request to make a reservation. It takes 150ms to serve
100 requests.

7.2.3 Token authentication. �is test checks the response time
of the server when a user requests a token. Figure 9 shows how the
response time of the server changes as the number of requests for
tokens increases.

Figure 9: Token authentication

�e server takes 5 seconds to respond to 10 to 50 token requests.
For requests between 60 and 80, the response time increases expo-
nentially. Overall, the server takes about 43 seconds to respond to
100 requests for authentication tokens. It takes the server about 3
seconds to respond with a token to a single request.

7.2.4 Unlock locker. �is test checks the response time of the
server when opening a locker. Figure 10 shows how the response
time of the server changes as the number of requests increases.

Figure 10: Unlock locker

�e response time for opening a locker increases linearly with
increasing number of requests. It takes the server 100ms to respond
to a single request to open a locker. It takes 240ms to serve 100
requests.

7.2.5 View all students. �is test checks the response time of
the server when the administrators view all students. Figure 11
shows how the response time of the server changes as the number
of requests increases.

Figure 11: View all students

7

�e response time for viewing all students increases linearly with
increasing number of requests. It takes the server 10ms to respond
to a single request to view students. It takes 21ms to serve 5 re-
quests.

7.2.6 View logs. �is test checks the response time of the server
when the administrators view all logs. Figure 12 shows how the
response time of the server changes as the number of requests
increases.

Figure 12: View logs

�e response time for opening a locker increases exponentially
with increasing number of requests. It takes the server 80ms to
respond to a single request to view logs. It takes 115ms to serve
100 requests.

7.3 Security tests

�e security tests were conducted to demonstrate the webserver's
responses to potential security threats.

7.3.1 Administrator only access. �is test is conducted by using
a user that is not an administrator to request a URL that is restricted
to the administrator.

Figure 13: Non-administrator token failed response

Figure 13 shows the response of the server when a user that is
not an administrator makes a request to a URL that is restricted to
the administrator. �e web server response with an unauthorized
status as expected.

7.3.2 No token provided. In this test a user sends a request to
the webserver without �rst requesting a token. �e response is
shown in �gure 14.

Figure 14: Unauthorized unlock fail

�e above response was generated by sending a GET request to
h�ps://lockit.cs.uct.ac.za/api/v1/plsnor001/unlock. �e webserver
responds with an unauthorized status but with a unique message
as expected.

8

7.3.3 Token authentication. �is test tested the webserver to
con�rm a token response when requested using valid UCT login
credentials. �e response is shown in �gure 15.

Figure 15: Authentication token

�e above response was generated by sending a GET request to
h�ps://lockit.cs.uct.ac.za/api/v1/get-auth-token. �e response body
has a long string of random characters. If this string gets altered in
anyway, the will send the response shown in �gure 16.

7.3.4 Username and password authentication. Outputs for send-
ing incorrect UCT student number and password to get a token.

Figure 16: Unlock locker

�e response in �gure 16 is generated when a token is requested
with incorrect UCT credentials or with a card number that is not
for a current Computer Science honours student.

8 DISCUSSION

�e design of the APIs maximizes cohesion and minimize coupling.
�is is important for the webserver because it minimizes vulnera-
bilities. In [6] these two structural metrics are helpful for predicting
vulnerabilities. �e use of LDAP is safe for protecting passwords
for users in case the webserver gets hacked. However this feature
makes the server slower as can be seen in section 8.2. �e time to
authenticate users was the longest with 43 seconds for 25 concur-
rent requests. �is time could be much less if the user passwords
were also stored on the server. However this is not required by the
product owners. �e server also takes time to respond when a user
requests to open a locker. �is happens only when the embedded
system is o�ine, however when it is online the server responds in
100ms as can be seen in section 8.2.4.

9 RELATEDWORK

�ere has been work done in this area of locker controllers [6]
presents a programmable electronic lock that can have multiple
users. �e problem with this locking mechanism is that it is keypad-
activated and it is programmable by the user. �is will violates the
aesthetic appeal of the lockers and still require a full time admin-
istrator to monitor use. Users can retain lockers for a long time
without removing their pass codes.

[3] Presents a very similar locker setup. �e di�erence is that [3]
has an input device installed for every locker. Furthermore, [3] has
a control unit and it needs an administrator to manage the system.
�is setup a�ects the aesthetic appeal of the lab and this solution is
expensive. �is would work if every student owned a locker for a
semester.

In [10] an electronic locker is activated using a telecommunications
network. Users open lockers by making a call to a number assigned
to a locker. Subscribers are stored in a database that is used to
authenticate the users when they make calls to lockers. �is system
does not use the same authentication as the university. Furthermore,
the locker numbers will need to be changed every time a booking
ends otherwise anyone can make a call to the locker.

10 CONCLUSIONS AND FUTUREWORK

�e basic requirements of the speci�cations have been met by the
server. �e server can reserve a locker, open a locker, show logs and
prevent unauthorized accesses. �e results of the webserver's tests
show that it is feasible to use awebserver to integrate cross-platform
applications with an embedded system. In future when the server
expands to accommodate more than 100 users, the performance
can be increased by using apache's mod cache module to cache
requests. �is will improve the performance by 5 to 10x over all
methods combined. Overall the performance of the webserver can
be improved by utilizing caching mechanisms provided by apache.

9

ACKNOWLEDGMENTS

Our thanks to Gary Stewart, Craig Balfour and Samuel Che�y who
have been excellent guides throughout this project. To Marion and
Raees, my project partners for showing interest and dedication to
this interesting learning experience.

REFERENCES
[1] Mike Bayer. 2010. SQLAlchemy Documentation. (2010).
[2] Arnold S Berger. 2002. Embedded systems design: an introduction to processes,

tools, and techniques. Focal Press.
[3] Kevin E Booth, Harry N Popolow, Richard R Ford, Edward E Johnson, Jon S

Lo�in, Lance C Osborne, and David W Johnson. 2005. Electronically-controlled
locker system. (April 12 2005). US Patent 6,879,243.

[4] Wesley J Chun. 2012. Core Python Applications Programming. Prentice Hall
Press.

[5] Miguel Grinberg. 2014. Flask web development: developing web applications with
python. ” O’Reilly Media, Inc.”.

[6] Yucel K Keskin and Asil T Gokcebay. 1999. Programmable digital electronic lock.
(April 13 1999). US Patent 5,894,277.

[7] Jim Sermersheim. 2006. Lightweight directory access protocol (LDAP): �e
protocol. (2006).

[8] Brent Ware et al. 2002. Open source development with LAMP: using Linux, Apache,
MySQL and PHP. Addison-Wesley Longman Publishing Co., Inc.

[9] Aaron Wa�ers, James C Ahlstrom, and Guido Van Rossum. 1996. Internet pro-
gramming with Python. Henry Holt and Co., Inc.

[10] Isaac DMWhite and James Dickens. 2005. Activation of electronic lock using
telecommunications network. (April 26 2005). US Patent 6,885,738.

10

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Solution Outline
	1.3 Report Overview

	2 Background
	3 Software development methodology
	3.1 Product Specifications
	3.2 HW/SW partition
	3.3 Iteration and implementation
	3.4 Detailed HW/SW design
	3.5 HW/SW integration
	3.6 Acceptance testing
	3.7 Maintenance and upgrade

	4 Requirements analysis
	4.1 Cancel reservation
	4.2 Email notification
	4.3 Locker configuration
	4.4 Penalties
	4.5 Reservation modifications
	4.6 Reserve locker
	4.7 Time allocation
	4.8 University authentication
	4.9 Unlock locker
	4.10 User information
	4.11 View logs
	4.12 View reservations

	5 Design
	5.1 Application Programming Interfaces
	5.2 Database

	6 Implementation
	6.1 Application Programming Interfaces
	6.2 Database
	6.3 Penalty calculation
	6.4 Security
	6.5 Time allocation

	7 Evaluation and results
	7.1 Acceptance tests
	7.2 Load tests
	7.3 Security tests

	8 Discussion
	9 Related work
	10 Conclusions and future work
	Acknowledgments
	References

