

Computer Science Honours

Final Paper

2017

Title: Smart Locking System

Author: Raees Eland

Project Abbreviation: LockIt

Supervisor(s): Gary Stewart, Craig Balfour, Samuel Chetty

Category Min Max Chosen

Requirement Analysis and Design 0 20 20

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 0

System Development and Implementation 0 15 15

Results, Findings and Conclusion 10 20 13

Aim Formulation and Background Work 10 15 12

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER

SCIENCE

Abstract

Traditional locking systems make use of a key and a lock, with

access granted to those who have a key to that specific lock.

With the emergence of embedded devices being used as in an

Internet of things environment, smarter and more secure ways of

locking can be implemented. This project looks at implementing

one such way to control access to the lockers in the honours lab.

With students out numbering the amount of lockers available, a

smart locking and storage system is needed for all to use it in a

fair manner.

The Locking system is built using an Internet of things device

and various electronics that minimises power consumption and

is easily scalable. Interaction with the system is done using

either a mobile application or website. An onsite touch screen

application is also made available to the users alongside an

RFID reader. A dedicated webserver processes commands and

reservations and notifies the locking system on when to open a

specific locker.

Testing the performance and reliability of the system, it was

found that this first initial prototype of the system was a success

and can be used as a stepping stone for a final product that can

eventually be implemented in the honours lab.

Keywords

Raspberry Pi, Smart Locking, Internet of Things, Performance,

Switching Circuit, AES, CBC

CCS Concepts

•Hardware  Communication Hardware, interfaces and

storage; Displays and imagers; Wireless devices; Integrated

circuits; Input/output circuits; Digital switches; Transistors;

Hardware Test; Hardware reliability. •Software and its

Engineering  Embedded Software;

1 Introduction

1.1 Lockit

Traditional locking systems comprise of a key and a lock which

can be prone to error. Some issues include but not limited to be

theft of keys, loss of keys and misplacement. This systems also

assumes each user has one or more locks for each key they

possess. Meaning that no two uses can use the lock unless both

have a key or share the key to a locker. This poses problems

related to security and privacy, unless users are fine with that.

With current advances in technology a smart locking system can

be designed and implemented to address the issues of traditional

locking systems. The goal of this project is to develop such a

system that allows the management of a set of lockers using cost

effective methods that are user friendly and scalable.

Users will be able to use this system through various means. The

user can communicate with our system through their smart

phones or computers (Website). An RFID reader and a touch

screen app will also be implemented for the user. The system

admin can also manage this system through a separate website.

1.1.1 Motivation

The newly renovated Honours lab lockers currently have no

locking mechanism, which is not ideal for security and usability

purposes. There are currently 34 lockers in the honours lab and

roughly 60 Computer Science honour students. Thus a smart

locking system is needed to satisfy the student’s storage needs.

Since all Computer Science students have access to either a

smart phone or computer that is connected to the internet a smart

locking system can be created to cater for students storage

needs. The idea is to build a system that is usable, convenient,

efficient and self-managing. This system uses technologies that

currently exists and incorporates it to develop the system.

The aim of this project is to allow the user to communicate with

our system through various methods. Thus enabling them to

book a locker for a specific time and open their locker. The

admin website will also allow the administrators full control

over the system.

The focus of this report will be on the creation of the physical

locking mechanism using cost effective and scalable methods

and how it will interact with the rest of the system.

1.1.2 System overview

The system has three distinct parts:

1. The physical locking mechanism alongside the RFID

reader and touch screen application.

2. The Webserver that receives requests and information

from the other two sections.

3. A smart phone application and website for users as

well as a system admin website.

LockIt: Smart Locking System

Raees Eland

Department of Computer Science

University Of Cape Town

elnrae001@myuct.ac.za

Each part is needed and there is a logical flow to the system. The

user will request a locker or open a locker though the phone

application or website, this information is relayed to the

webserver and either stores a user’s booking or sends a requests

the locking mechanism to open a specific lock. Figure 1 shows

an overview of the system and its different parts.

Figure 1: System Overview

1.1.2.1 User Interfaces

This part serves as the primary means of communication

between the user and the system. The main purpose of the user

application is to allow the user to be able to book a locker or

open their locker. The system admin website will be created to

allow full control over the system. Some features of the user

application includes:

1. Booking a Locker

2. Opening a Locker

3. Viewing available lockers

4. Free their lockers

Features of the system admin website include:

1. Delete a user

2. Open any locker

3. Reserve any locker for an indefinite amount of time

4. Add new lockers

These applications will communicate directly to the webserver

through http requests.

1.1.2.2 Webserver

The webserver serves as the brain of the system. This is where

users are stored in a MySQL database and various information

regarding the user. The webserver serves as an intermediary

between the physical locking system and the user applications.

The webserver processes requests given by the user through the

user applications and decides what to do with the request.

Communication to the server is done through https requests. The

webserver is hosted on a virtual machine running Linux and uses

apache. The APIs of the webserver is created using Flask (Flask

is a light weight python web framework). Some features of the

webserver include:

1. Self-managing

2. Process requests in real time

3. Versatile

1.1.2.3 Physical Locking Mechanism

This is the topic of this report. The locking system will only

communicate with the webserver through http requests. An

RFID reader and touch screen is included in this part of the

system, since it will communicate directly with the locking

system, however the touch screen will also be communicating

with the webserver to get information on users who use this as a

means of booking a locker or opening their locker using their

UCT student card.

1.2 The Smart Locking System

1.2.1 Problem Statement

Students require lockers to provide a personal secure storage for

their belongings to reduce their load as they commute between

classes on campus. The use of traditional physical keys for locks

poses problems in the modern world.

1.2.2 Research Question

The main research question for this project consists of three

parts.

1. Is it possible to control an array of locks by

developing software for an embedded system to allow

users to remotely open their locks from a mobile
phone, website or using an RFID.

2. Is it possible to use a webserver to integrate a cross

platform applications with an embedded system?

3. Is it possible to integrate a cross platform application

with embedded devices to create a secure smart locker

system?

Once we investigate these three parts we can finally answer the

big question: can we develop a smart locking system for the

honours lockers that is self-managing, scalable and cost

effective that will be accepted by the users. This report will

focus on the design, implementation and testing of a system that

will answer the first question posed above.

1.2.3 Design Overview

Figure 2 is the communication diagram that this report will

focus on. It includes the communication between the webserver

and Raspberry pi, the RFID and touch screen that is attached to

the Raspberry Pi. The Raspberry Pi sends signals over its GPIO

pins to the switching circuit which is powers by an external 12V

power supply which in turns controls the opening of the locks.

 Figure 2: Locking System Overview

Switching Circuit

The switching circuit is made up of transistors (transistors act as

switches, hence switching circuit) and resistors. Its main purpose

is to direct the control signals coming from the GPIO pins of the

Raspberry pi to the locks. The circuit allows the system to have

individual control over each lock. It will also control the drive

voltage from a 12V power supply, turning it on when a lock

needs to be opened for only a few seconds. This limits current

being drawn and saves power costs since the lock that will be

used is a solenoid lock that requires 12V to open and no voltage

or current need be drawn in order to keep the lock closed. This

particular circuit will only control 9 lockers, however it can

easily be scaled up to control many more locks if need be.

Raspberry Pi

The embedded device that will send control signals to the

switching circuit is the Raspberry Pi 3. The Raspberry Pi is a

credit sized computer which was inspired by the 1981 BBC

Micro. The original intention of the device was to improve

programming skills and hardware understanding [1]. Some

advantages of using the Raspberry Pi 3 include:

1. It comes with Wi-Fi and Bluetooth enable

2. It is possible to form an expandable system with

various electronic components (sensors and electronic

circuits) using digital inputs and outputs, I2C or SPI

protocols.

3. Expansion and communication with network devices

over a LAN adapter is possible.

4. C, Python or object oriented languages such as C++

and Java can be used for programming of Raspberry

Pi [2].

The above advantages of the Raspberry Pi 3 make it the perfect

device for our system, however it is noted that some delay is

expected between a program call that activates a pin and the

GPIO pin activation.

Webserver

The Raspberry Pi and the webserver communicates through http

requests. The server sends open commands to the Raspberry Pi

to open a specific locker. When users use the touch screen to

book a locker, the Raspberry Pi sends requests to the webserver.

1.3 Requirements

In order for this project to be a success the system needs to meet

a few requirements. Students require a safe storage space that

can be used by all. This part of the project requires multiple

locks to be controlled by a single device for cost effectiveness.

The system needs to be reliable so students can store their items

safely and use the system without complaints. It also needs to be

secured to protect user’s items. The students must feel as though

the system is safe and convenient to use, therefore the system

must be:

1. Cost Effective

2. Scalable, lockers can be added to the system with

minimal change to the current system.

3. Secure, hackers should not be able to break the system

and user’s information should be secure.

4. Reliable

5. Self-managing

6. The locking system needs to communicate well with

the webserver to achieve greater reliability and

performance of the entire system.

Therefore the aim of this project is to develop a smart locking

system that meets the above requirements.

2 Background

With advancements in technology faster and smaller embedded

systems can be built and used for education purposes, security

and other useful projects. One such application is smart locks.

Smart locks in the context of this project is a lock that can be

controlled over the internet. This has some issues and benefits.

Issues regarding architecture arise mainly from security,

however there are many mitigating factors and tools to reduce

the risk arising from security issues. Some benefits include:

Users no longer need to carry a key with them, better security

than traditional locking systems and can be beneficial to visually

or physically impaired people.

2.1 Related Smart Locking Systems

Smart locking systems is not a new thing. There are many

projects and papers written about smart locks and smart security

systems over an internet of things environment. Looking at three

such projects, discussing hardware and software used as well as

differences, similarities and limitations of each.

In the project done by Rafid Karim and Haidara Al-Fakhri [3].

Their smart locking system is achieved using NFC (Near Field

Communication), Microcontrollers and a smart phone to control

the lock. The NFC module makes it impossible to remotely open

the lock if the user is not within a certain distance of the lock.

This gives extra security measures. They used a PoE powered

circuit board containing a MSP430 microcontroller to work

along with a NFC reader, which was connected through the

Serial Peripheral Interface. The following steps were followed in

order to realize their goal of a smart locking system:

 Connecting the microcontroller to a network

 Make the microcontroller download its application at

boot time

 Connect a NFC reader to the microcontroller

 Create a smart phone application

 Create Custom UDP packets to be sent and received

by the microcontroller

 Connect sensors to the microcontroller

 Connect and Control a servo motor connected to the

microcontroller

 Setup a web server and homepage to control the

microcontroller. [3]

It is noted in the paper that some of the above goals were not

achieved. They were able to send UDP packets and develop a

working NFC reader.

Pandurang [4] et. al. looked at smart locking systems that detects

user’s motion by a camera and only then will the user be able to

open the lock. The camera need only detect the user in front of it

for the user to open the lock. They achieved their smart locking

system using an ARM7 microcontroller with Bluetooth

capabilities to act as a motor to unlock and lock the lock. A

camera was attached to the controller to detect user’s movement

in front of the lock.

Hashim[5]used a PIC microcontroller (PIC16F877A) with an

extra WiFi peripheral to control a lock. The WiFi module used is

an XBee WiFi module. The PIC microcontroller is connected to

a relay which in turn is connected to the lock. An Android smart

phone application was also developed which connects to the

WiFi module to control the lock.

Many other projects based on smart locking systems were done

and tested. The following shows a design diagram of such a

project.

The following diagram is used by Kamelia et. al. [6]

Figure 3: Block diagram of door automation system using

android.

2.2 Security and Limitations

A project done at UC Berkeley [7], highlights security threats an

automated lock system could potentially face. The four security

issues they focus on are physical attacks, Theft of authorizing

device, revoked attack and a relay attack, focusing on a security

measure for unauthorized access. The paper looks at five

different types of smart locks and how they each overcome the

security problems. The locks are Kevo, August, Dana,

Okidokeys and Lockitron. Four of the five locks tested relied on

the user’s phone for connectivity to the Internet. The only way

the lock can receive state updates from the manufacturer’s

servers is through the user’s phone. State consistency attacks

focus on this type of model that allows the attacker to avoid

revocation and access logging. All the locks tested allowed the

owner to revoke other user’s access. This is done when lost or

theft of the device occurs. Kevo, August and Dana provide some

form of auto-locking system. Whenever a device with the

correct access permissions enters the communication range of

the smart lock, the door will unlock automatically. While this

interaction model greatly improves the usability of lock systems,

it was found that all existing locks that provide this functionality

can undesirably unlock the door by accident, allowing a

physically-present attacker to gain unauthorized access [7].

The Raspberry Pi 3 model B has a 1.2GHz quad core ARM CPU

with 1GB of RAM. The processing power of the Pi is sufficient

for the purposes of this project. The only limitation of this

Raspberry Pi is the amount of GPIO pins it has, however it will

be shown in this paper that, one only needs a few GPIO pins to

control multiple pins with the use of some circuitry and design.

It is noted that the Raspberry Pi does not have a real time clock,

thus when a call is made to open a lock some delay is expected.

Since users will be opening their lockers over a network some

extra delay can be expected depending on signal strength of the

network and traffic. Therefore the complexity of this design is

based on how many lockers there are. The prototype only

consists of 9 lockers, therefore circuit complexity is minimal and

can be built by one person, however when the prototype is

scaled up it is recommended to use PCBs (Printed circuit

boards).

2.3 Discussion

All three projects reviewed make use of a smart phone either

using WiFi or Bluetooth to control the lock. Each uses a

different microcontroller and have their own extra features. They

all control a single lock making it ideal for private use, however

some security issues are noted. For the lock controlled with

Bluetooth, any person with a Bluetooth capable phone can open

the lock. In Hashim’s [5] project they use a self-made

application, therefore anyone with that application can open the

lock when connected to the same WiFi as the WiFi module used.

All these project assume personal use which causes less concern

over security and more over functionality.

This project differs to the rest in that we now want to be able to

control an array of locks using multiple devices. The Raspberry

Pi will be connected to the eduroam network, thus users must be

connected to the eduroam network as well to open their lockers.

However we need to control access to the lockers since only

Computer Science Honour students can use them. This calls for

extra security measures to be put in place.

3 Design

The purpose of the Lockit project is to design and implement a

working prototype of a smart locking system for the honours

lockers situated in the honours lab. The system should be

reliable, safe, cost effective and self-managing. This moves

away from the traditional methods of locking and provides a

more modern and secure approach to storing ones belongings.

The Raspberry Pi is used as the primary device to control an

array of lockers. The Raspberry Pi communicates with the

middleware to determine which lock should be opened.

Accompanying the Raspberry Pi is a LCD screen which contains

the touch screen app with very basic functionality. Functionality

of the touch screen app is reduced to encourage users to use the

smart phone application or the website. The touch screen app is

only for fast booking of a locker. An RFID reader will also be

situated on the Raspberry Pi to allow the user to open their

locker with their UCT card.

3.1 Technology and Tools

Tools used are the Raspberry Pi, RFID reader, LCD screen,

Solenoid locks and a switching circuit. On the software side

Raspbian Jessie was used as the operating system, flask, and

python to develop the touch screen application and to read

information coming from the RFID reader. AES (Advanced

Encryption Standard) is used to send messages between the flask

server on the Raspberry Pi and the webserver. AES is a

symmetric encryption algorithm, meaning one key in used for

both the decryption and encryption process. It was designed to

be efficient in both hardware and software.

3.1.1 Hardware

3.1.1.1 Raspberry Pi

As described before: the Raspberry Pi is a credit sized SoC

capable of performing a variety of tasks. The Raspberry Pi

Model 3 B will be used because of its Wi-Fi capabilities and

faster processor to run all the applications while receiving

information from a webserver. The Raspberry Pi is an easy to

use device with plentiful documentation online and a Linux

operating system. With all these features the Raspberry Pi is

basically a mini-computer. This Raspberry Pi also has 34 GPIO

pins which can be used to control a lock, making this device

perfect for this project. The GPIO pins send signals to the locks

to open a lock.

3.1.1.2 Solenoid Locks and Push Latches

The solenoid locks require 12V to turn on. The reason for this

type of lock is because its default state is closed and a 12V

voltage is needed to open it. Since the locks will be closed for

majority of the time, no current will be drawn. When a lock

needs to be opened, 12V will be sent to the lock for a few

seconds. This is done to reduce heating of the locks and

minimize electricity costs. A push latch will then open the

locker for the user.

3.1.1.3 Touch Screen LCD

A 5’’ touch screen will be used. This will allow the user to book

a locker. A PyQt GUI application will run. A Raspberry Pi 5’’

LCD display is used.

3.1.1.4 RFID Reader

The RFID (Radio-frequency identification) reader will scan a

user’s UCT card can transfer the information to the Raspberry Pi

via a USB connection. The RFID uses electromagnetic fields to

identify the cards and obtain information from it.

3.1.1.5 Switching Circuit

The switching circuit consists of multiple TIP122 and TIP127

transistors as well as 8.2K ohm resistors. The reason for using

the TIP122 and TIP127 include a high amplification factor of

1000 and a low turn-on voltage of 0.2V. This is ideal since the

locks require a 12V drive to unlock it and the GPIO pins of the

Raspberry Pi can only produce 3.3V.The resistor is used to

control the amount of current flowing to each row of locks. This

is done to limit the amount of current drawn from the Raspberry

Pi, since drawing too much current can lead to the Raspberry Pi

breaking. The TIP127 (only one is used) is an npn transistor that

controls the 12Vs coming from the power supply. The rest of the

TIP122 (pnp transistors) is used to control each lock.

3.2 Software

3.2.1 Operating System and Python

The operating system used is the latest for the Raspberry Pi:

Raspbian Jessie. This operating systems comes pre-installed

with development tools such as Python, java as well as some

IDEs. This makes set-up easier and more efficient. Python is

used to develop all software. A Flask server was needed and

Rapbian Jessie contains Python packages that control the GPIO

pins of the Pi, hence Python is used. Python 3 is used.

3.2.2 Flask Server

Flask is a lightweight web framework for python. It is easy to

use and well documented. A simple server was needed to

communicate with the middleware, thus Flask was chosen since

it is easy to implement, understand and install. The main

purpose of the Fask server is to receive and process an http open

request from the webserver. It then turns on the GPIO pin

associated with the lock that needs to be opened on, which opens

the lock.

3.2.3 Touch Screen Application

The touch screen application was developed using PyQt. PyQt is

a Python wrapper around the QT framework for creating

graphical user interfaces. PyQt is one of the most popular GUI

frameworks used in Python. It has a wide variety of functions

and methods which are all well documented and easy to use.

PyQt is a free software developed by Riverbank Computing. The

touch screen application will allow users an extra way of

booking a locker if they have no access to a phone with the

mobile application on it or a computer.

3.2.4 Security

The Raspberry will only need to communicate with the

webserver. Since the Raspberry Pi will communicate with the

webserver via http requests and device on the same network can

also access the Pi once they know the url to open a locker. Thus

a way is needed to ensure requests are coming from the

webserver and not some other device. One way to achieve this

is so send encrypted messages between the Raspberry Pi and

webserver. This is where AES is used. It will send encrypted

messages between the Flask server situated on the Raspberry Pi

and the webserver.

3.3 Functionality and Features

3.3.1 Unlocking and Locking

Users can unlock their lockers in one of three ways. The first

two ways is done via the user interfaces, namely the smartphone

application and website. The third is using the RFID reader

situated next to the lockers. Users would first need to book a

locker in order to open one. Users cannot book more than one

locker at a time. Once a lock is open the push latch will

automatically push open the door. To lock their lockers, users

would just need to push the door close.

3.3.2 Booking a Locker

Booking a locker can also be done in one of three ways. Either

using the smartphone app, user website or using the touch screen

situated next to the lockers. It must be noted that the touch

screen application can only be used for booking a locker starting

at the current time of login. The touch screen app is made for

users who want quick and simple booking.

3.3.3 Communicating with the Webserver

There is a two way communication with the webserver. The first

way is from the webserver to the Raspberry Pi flask server. The

only request that the flask server listens for is an open request

from the webserver using http. This increases security and

performance. The Raspberry Pi sends get and post requests

when a user wants to open a lock or book a locker. This is done

through https requests. A token is needed when communicating

with the webserver to increase security of our system. A token

can be obtained when a valid UCT ID logins into the touch

screen application or when a valid UCT card is read by the

RFID reader. A valid UCT ID is that of a UCT Computer

Science Honour student and the System Admins.

3.3.4 Security

Physical security will be about where the Raspberry Pi will be

placed. A secure place and controlled area is needed to keep the

Pi physically secured. Since the Raspberry Pi communicates

with the webserver over http requests it is vulnerable to cyber-

attacks. However the Pi only listens for one specific request. The

request also comes in the form of an encrypted post message via

the webserver using a key only know by the server and the

Raspberry Pi flask server. Attackers would not only need to

know the key used but also the encryption algorithm used.

Therefore the main security issue is keeping the shared key safe

and a secret, however if the system administrators feel that the

key has been compromised they can easily change it.

4 Implementation

4.1 Hardware

The component that allows for an array of locks to be controlled

with a limited amount of pins is the switching circuit. Figure 4

shows the wiring diagram of the system

Figure 4: Wiring Diagram

9 TIP122 transistors are arranged in a 3x3 grid. Each of these

transistors is connected to one solenoid lock. The emitters of

each transistor in each row are connected, which in turn is

connected to the collector of another TIP122 transistor. That

transistor is then connected to a GPIO pin of the Raspberry Pi.

Each column of transistors is connected by their base which in

turn is connected to a GPIO pin of the Raspberry Pi. One

TIP127 transistor controls the 12V that goes directly to the

positive terminals of the solenoid locks. This allows for 9

solenoid locks to be controlled by 6 GPIO pins. Each lock can

be turned on by pulling the row GPIO pin and column GPIO pin

high. In Figure 4, in order to open the very top lock pins 2 and

17 would need to go high (i.e. supply 3.3V). The resistors are

placed on the base of each transistor to protect it and limit

current as discussed before. The circuit and Raspberry Pi is also

grounded as needed for current flow to be completed (see Figure

4). This system can be greatly scaled up by using a multiplexer

(MUX) between the connection of the GPIO pins and

transistors. A multiplexer is a device that selects one of several

inputs and outputs it to a single line. If a 3-8 MUX is used one

could control locks in an 8x8 grid, therefore 64 locks can be

addressed using 6 GPIO pins (excluding pins needed for drive

voltages and addressing, since a mux needs an extra pin for

addressing), but this leads to extra circuit complexity which it is

then advised to use PCBs and this is left for future work.

The circuit was built using components supplied from the

engineering department and was built on veroboard. The power

supply used to power the circuit and locks comes from an old

computer. The Raspberry Pi draws its power from a power

outlet.

4.1.1 Raspberry Pi

In order for the system to function as it’s supposed to, three

pieces of software needs to run on the Pi:

 The touch screen application, since the LCD will be

connected directly to the Raspberry Pi

 The flask server

 RFID card reader software.

All software was written in python. The Raspberry Pi needed to

connect to UCTs network via Ethernet to allow the flask server

to listen for connections. This was done by registering the MAC

address of the Raspberry Pi on the network and assigning it a

static IP address (DHCP does this for us). Once this was done

http requests to the flask server could be requested by anyone on

UCTs network (eduroam).

4.2 Software

4.2.1 TouchScreen Application and Flask Server

The Desktop application was developed using PyQt4. It allowes

for quick booking of a locker. Once a user logs into the

application and is authenticated (authentication is done by the

webserver) they then need to select a locker. The application

first checks with the webserver if a locker is available. Once a

user selects their locker and specifies a time greater than 1 hour

but less than a maximum time specified by the server the locker

is then booked for that specific user. Users can only specify how

long they want the locker for in hours starting from the current

time of login. If a user already has a locker, the application will

notify the user that they have a locker. They then can use the

RFID reader to open their locker

The flask server has two route methods. The first is when the

RFID reader is used to open a lock and the second when an open

request is made by the webserver. A thread class was needed to

run both the flask server and touch screen application

simultaneously. GUI applications in python execute an ‘infinite

loop’ that always listens for user input and flask servers follow

the same approach, but instead listens for http requests. Thus a

thread class was needed to run both. Python GUIs must always

be run from the main thread or else the application will not run.

Using this structure one could update GUI elements using the

emit() function from the flask application.

4.2.2 Starting App at boot time

Since the OS that runs on the Raspberry Pi boots up a desktop

GUI, some configuration files and extra files needed to be

changed and created so only the touch screen application would

run upon boot. First a package called nodm had to be installed

on the Raspberry Pi using apt-get. Nodm is an automatic display

manager which automatically starts an xsession at system boot.

The nodm file located at /etc/defaults had to be modified to the

following:

NODM_ENABLED = true

NODM_USER = pi

Once those changes were made an .xsession file had to be

created in the directory /home/pi which contained the following:

exec openbox-session &

while true; do

 python3 /home/pi/Desktop/Locker.py &

 python3 /home/pi/Desktop/card_reader.py

done

Here the python files that needed to be run at boot time were

located in the Desktop folder. The while loop ensured that if

either of the flask server, touch screen application or card_reader

application crashed it would restart, thus recovering from a

failure. Locker.py runs both the Flask server and touch screen

GUI and card_reader.py contains the code needed to scan and

process a UCT card.

4.2.3 Security and Communication with Webserver

For a lock to be open the webserver would need to send an http

post request to the flask server, posting which lock it would like

to open using the static IP address of the Raspberry Pi as the url.

The url used to open a lock is:

http://IP_addr_Pi/open/<message>. Where IP_addr_Pi is the

static IP address of the Raspberry Pi and message contains the

locker the Raspberry Pi must open. With this current system in

place anyone with knowledge to the Raspberry Pi’s IP address

could open a locker and it is quite easy to obtain the IP address

using sniffing tools. Thus a message encryption system is used.

The encryption algorithm used is AES (Advanced Encryption

Standard) in CBC (Cipher Block Chain) mode, using a 256bit

key that is hashed before it is used to encrypt the message. The

encryption algorithm sits on the webserver and the decryption

algorithm on the Raspberry Pi flask server. Both the Raspberry

Pi and webserver share a common key for encryption and

decryption. It is impossible to try and decrypt the message sent

without knowing the key. The Raspberry Pi will always decrypt

messages it has been sent and if it fits the specific format the

flask server is looking for, only then will it process that request.

This makes it almost impossible for a hacker to send the

Raspberry Pi a message to open a lock. However there are

http://ip_addr_pi/open/%3cmessage

weaknesses. If the webserver is hacked and the API is obtained

to open a locker then the locks will open since the hacker will

then know the format of the message and key. This can be

averted by putting up firewalls for the webserver and changing

the format of the message and key. Another problem that could

arise is that someone gains physical access to the Raspberry Pi

that controls the locks.

It is safe to say that the system is secure and will take

considerable effort and skill to hack it.

4.3 Method

The following method was implemented to realize the project

goals, once all the components were present and decided upon.

 Building and testing of the switching circuit

 Development of the flask server to unlock lockers

 Installation of the locks and circuitry

 Connecting the Raspberry Pi to the switching circuit to

test unlocking capabilities over a local network

 Obtaining a static IP for the Raspberry Pi

 Development of the touch screen application

 The integration of the RFID reader and software to

system, then testing it.

 Integrating touch screen application with the system

 Implementing threading to run both the GUI and flask

server

 Implementing message encryption

 Integration with the webserver

 Only booting touch screen GUI

 Constant testing and debugging of the system.

5 Evaluation

In order to determine is the physical locking systems works as

it’s supposed to, two types of tests are needed. The test is to rest

the reliability of the physical locking system (When an open

command is sent to it will it open the correct locker always).

And the second test is a performance test (How long does it take

to process the open command). The touch screen application and

RFID reader will also be tested. The UI design of the touch

screen will be evaluated and the performance of the RFID reader

will be recorded.

5.1 Touch Screen Application

The touch screen application is meant to have a simple looking

UI with limited functionality. It was explained to users that the

mobile application and website should be the primary means of

communicating with the system and that this application was not

intended to have all the features and functionality the mobile

application has. The application is meant for quick booking of a

locker only as described before. Therefore users felt the

application had the features it needed. Feedback from the users

after the first iteration of testing included:

 Making the application blue, same as the UCT colours

 Create a confirmation page after a user has booked a

locker

 Centring Text on the Screen

 Greying out the Back option since users should use it

less.

A second round of tests was conducted after UI changes was

made and feedback was recoded, users seemed satisfied with the

functionality of the application since it was explained that the

touch screen application is only meant for quick booking of a

locker and was only intended to offer the basic features.

Changing of the font size was also suggested. This will be done

for the final product.

5.2 Performance Testing

The testing set-up includes the Raspberry Pi connected to a

laptop (i7, 8GB RAM) over VNC with a 8Mb/s internet

connection. The Flask server on the Raspberry Pi is run using

localhost. Using Google Chrome a query is sent to open a

locker: ‘http://localhost:5000/open/<locker number>/’. The time

taken to open that specific lock is then recorded. The RFID is

then also used to open a lock and time taken to open the lock

using the RFID is also recorded.

Figure 5: Line graph the time it takes to open a locker

The time it takes to open a locker using the URL or RFID is in

milliseconds. This can be attributed to the fast processing power

of the Raspberry Pi 3 and 100Mb/s connection between the

laptop and Raspberry Pi. The RFID is expected to take longer

since it first needs to process the UCT card before opening a

locker.

The next step was to test how long it would take the RFID

reader to process a UCT card when first using the server to

authenticate a user before login the user in or opening their

locker. The test above did not authenticate users.

1

1,5

2

2,5

3

1 2 3 4 5 6 7 8 9 10

Ti
m

e(
m

s)

Trial

Responce Time (ms)

URL RFID

 Figure 6: Time taken to process an RFID card

As expected, authenticating a user requires more time, however

the time it takes to process the card is quick an users will not

notice the difference since it takes less that a second to process a

card.

In order to test the true performance of the system we would

need to record the time it takes to open a locker using the mobile

application or web app, however some difficulties were present

when trying to do just that (see section 5.5).

5.3 Reliability Testing

The reliability of the system is depends whether or not will stand

the test of time and not fail under extended use. As it stands all

locks can lock and the system is functioning as it should. The

physical locking system was installed one month ago at the date

of writing this paper, and multiple tests have been conducted to

test if the locking system still works. It passed the test every

time. The locks was installed in the makers lab which is not used

by many students, therefore the lockers were never disturbed.

5.4 Other Tests Completed

Other tests done includes:

 Testing of the switching circuit before it has installed.

Testing was conducted on bread board before it was

ported to veroboard.

 Testing each lock to determine if it locks and unlocks.

 Testing the RFID reader (scanning a UCT card to

determine if a lock will open)

Results of the above tests were not recorded, instead the tests

done above was to determine if the system was working at the

current time the tests were conducted. If not the system was

debugged using components such as ammeters, voltmeters, and

oscilloscopes, and once an issue was found it was fixed

immediately. Constant testing of each component was needed in

order to ensure optimal performance and reliability. Threshold

voltages cannot be tested since the locks will only open and

operate at 12V with 3.3V coming from the Raspberry Pi. Any

less the locks will not open and voltages exceeding 12V can

possibly fry the circuitry and locks.

5.5 Discussion

Emphasize on the design and implementation was placed on this

part of the project due to it being a development project. A good

design and implementation will lead to a working product. All

tests that needed to be conducted in order for the first prototype

to work was conducted and passed. The locking system

performs as it should and can process multiple requests, since

http is used. Open and booking requests can comfortably be

handled by this system and it does so efficiently.

Since the lockers are installed in another area where the

Raspberry Pi does not have access to internet, testing the

performance of the system as a whole was limited.

6 Future Work

This is a first working prototype of a smart locking system for

the honours lab. Taking the design of this project a final working

implementation of a smart locking system can be achieved and

installed in the honours lab, however some improvements can be

made to the prototype.

Better and bigger locks need to be used. One design flaw of this

prototype is that the locks used were too weak to be used with

the push latches. The locks were unable to open due to the

strong force of the latch pushing against the door, therefore a

bigger and stronger lock is needed for a final implementation of

this system. A back up battery can be installed to power the

system in case the power goes out, however users will not be

able to open their lockers if the internet (Ethernet) goes down,

therefore system admins need a back door to access the

Raspberry Pi without relying on the internet. This can be done

using ssh. The touch screen application can also be turned into

another user interface that has the same features as the mobile

application if need be.

Additional testing of this system would also be favourable. Due

to the time constraints not all tests could be conducted

thoroughly and only the performance of unlocking a lock was

tested once the prototype was complete. Reliability testing was

done while the system was being installed. However those two

tests were sufficient to produce a working prototype. Other tests

that can be conducted in the future include:

 Testing the strength of the lock.

 The unlocking procedure in different temperature

settings

 Overloading the flask server with opening requests

0

0,1

0,2

0,3

0,4

0,5

1 2 3 4 5 6 7 8 9 10

Ti
m

e(
s)

Trial

Responce Time (s)

7 Conclusion

This project set out to investigate whether it was possible to

design and implement a smart locking system for the honours

lockers that is cost effective and scalable. Research shows that

there are many projects and reports on smart locks that can be

controlled over Bluetooth or WiFi, however none designed and

implemented a system that controls an array of locks to be used

by multiple users.

The design outlined features and functionalities that a smart

locking system should typically consist of as well as what

components would be necessary to achieve the features and

functionality stated.

The implementation of the system answered the research

question: can we develop a smart locking system for the

honours lockers that is self-managing, scalable and cost

effective that will be accepted by the users? It showed that such

a smart locking system can be built and was built as a first

prototype.

The tests conducted proved that this prototype was a success and

can be used as a design to build a final product. The one design

flaw is that the locks and push latches were not compatible. The

force of the push latch was too strong for the lock to unlock.

This can be overcome by using a stronger solenoid lock or

weaker push latch.

With enough time and resources this prototype can be turned

into a fully functional final product with extra features that users

can enjoy and use to keep their personal belongings safe. The

use of such a system can extend to other services and industries

such as post offices and courier services.

8 Acknowledgements

I would like to thank my group members, Marion and Norman

for making this project work. Our supervisors, Gary, Craig and

Sam for guiding the way and Justin Pead from UCT for his help.

9 References

[1] What is a Raspberry Pi? Opensource.com. Available at:

https://opensource.com/resources/what-raspberry-pi

[Accessed May 4, 2017].

[2] Mirjana Maksimović, Vladimir Vujović, Nikola Davidović,

Vladimir Milošević and Branko Perišić, Raspberry Pi as

Internet of Things hardware: Performances and Constraints,

Proceedings of 1st International Conference on Electrical,

Electronic and Computing Engineering IcETRAN 2014,

Vrnjačka Banja, Serbia, June 2 – 5, 2014, ISBN 978-86-

80509-70-9.

[3] Rafid Karim, Haidara Al-Fakhri, “Smart Door Locks”,

December 2013

[4] Bhalekar Pandurang, Jamgaonkar Dhanesh, Prof. Mrs.

Shailaja Pede, Ghangale Akshay, Garge Rahul, 2016 ,Smart

Lock: A Locking System Using Bluetooth Technology &

Camera Verification, International Journal of Computer
Applications, 4(1), pp.136–139.

[5] N. Hashim, N. F. A. M. Azmi, F. Idris , N. Rahim, 2016,
Smartphone Activated Door Lock Using Wi-Fi, ARPN

Journal of Engineering and Applied Sciences, 11(5),

pp.3309-3312

[6] Lia Kamelia, Alfin Noorhassan S.R, Mada Sanjaya and W.S.,

Edi Mulyana, 2014, Door-Automation system using

Bluetooth-Based Android for Mobile Phone, ARPN Journal
of Engineering and Applied Sciences,9(10),pp.1759 – 1762

[7] EECS at UC Berkeley. Grant Ho, Derek Leung, Pratyush

Mishra ,Ashkan Hosseini, Dawn Song, David Wagner,Smart

Locks: Lessons for Securing Commodity Internet of Things

Devices | EECS at UC Berkeley. Available at:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-

2016-11.html [Accessed May 5, 2017].

