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ABSTRACT
Various motion sensing devices have been used in research to inves-
tigate gesture recognition for sign language. �e HANDGR project
looks to work towards the creation of a gesture recognition system
for South African Sign Language, speci�cally with the use of the
Microso� Kinect. �is review looks at various classi�cation meth-
ods, mainly machine learning techniques such as support vector
machines, arti�cial neural networks and hidden Markov models.
Methods for feature extraction from the Kinect are also discussed
and considered. Based on the material reviewed, it is evident that
an e�ective and useful system for the HANDGR project can be
created, with enough experimentation.
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1 INTRODUCTION
�ere is an obvious barrier in communication between deaf and
hearing people all over the world. Over the years, technology has
been used to help assist the deaf community in this regard. However,
there is always more that can be done to make the deaf feel less
excluded.

One such area of research has been the use of cameras and mo-
tion sensors to read and correctly interpret sign language gestures
[9]. �is has been done with various techniques, primarily based
on machine learning, in order to train the system to recognize and
classify gestures correctly. �ree of the more frequently used de-
vices on which these algorithms have been implemented include
the Myo armband, the Leap Motion controller and the Microso�
Kinect motion sensor.

Sign languages can make use of the di�erent parts and posi-
tions of the body, such as the face, arms, hands and body posture.
�e South African Sign Language (SASL) alphabet, however, is
recognised and gestured by only the use of the hand in various
positions.

�e HANDGR project will be based on evaluating selected algo-
rithms (which have been reported to work e�ciently and accurately
on research of sign language gesture recognition) for each of the
three motion-sensing devices. �is will be done in term of the SASL
alphabet (or a subset thereof), in order to possibly develop a system
to assist in breaking down the communication barrier between
the deaf and the hearing. Later phases of the project will look at
possible combinations of inputs from these devices to re�ne results.

∗In partial ful�lment of the CSC4000W Project

�is particular review focuses on how the Microso� Kinect has
been used by various researchers to implement sign language recog-
nition tools through various algorithms.

2 MICROSOFT KINECT
�eKinect is a motion sensing device that is mainly used in conjunc-
tion with Microso� Xbox consoles. However, it is also compatible
with Microso� Windows computers, and this, along with the avail-
able online so�ware development kit (SDK), has made research
possible in other non-gaming contexts, that require sensors for
gestures and/or spoken commands.

What makes the Kinect particularly special is the feature of a
depth sensor, which is particularly useful when it comes to gesture
recognition and the distinguishing of the human body from a busy
background. �e Kinect e�ectively provides a cheap (in comparison
to other commercially available depth sensing cameras) and easily
available depth sensor [12, 16, 19] that projects an infrared light
pa�ern to provide a reliable depth map as output [19]. Additional
advantages include the Kinect not requiring background image
calibration, or special markers or gloves for tracking [6], and the fact
that the depth sensors are not a�ected by environmental conditions,
such as low lighting [1, 6]. �ese featuresmake it evenmore suitable
for this project.

However, due to the low resolution of the depth sensing camera
(only 640x480), it can be a challenge to �nd and separate speci�c
objects in the image [12]. In our case, the hands of the person
using the device are most important, and a hand can occupy a very
small portion of the already low-quality image extracted from the
Kinect’s depth sensor.

In all of the methods discussed in this review, the Kinect is placed
some distance away from and directly in front of the user, such that
the camera faces the user’s body.

3 GESTURE RECOGNITION METHODS
Variousmethods of both feature extraction and recognition/classi�cation
have been experimented with and tested, in the Kinect context.
Commonly used machine learning techniques for this kind of clas-
si�cation include neural networks, hidden Markov models [6, 9],
and more recently, support vector machines [1, 16]. Other methods
that do not necessarily use machine learning are also considered.
�ese are described below according to the technique used, along
with the respective feature extraction methods used. �e accuracy
rates, datasets used, features extracted and �aws with experimenta-
tion are the main aspects discussed. Table 1 provides a summary of
the experiments done in the reviewed Kinect-based papers.
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Table 1: Comparison of highlighted previous research on sign language recognition using Kinect

Reference Classi�cation technique Feature extraction Dataset Accuracy

Sun et al. [16], American
Sign Language

Latent Support Vector
Machine

’Ordinary’ features: HOG
and motion/appearance;
and ’Kinect’ features: body
pose, hand shape and hand
motion

Part A: 73 unique ASL
signs; 1971 phrases by
9 participants

86.0%

Part B: 63 unique ASL
sentences; 1890 sen-
tences by 10 partici-
pants

82.9%

Agarwal et al. [1], Chinese
Sign Language

Multi-class Support Vector
Machine

Depth histograms and
motion characteristics
between frames

2 datasets of 47 video
sequences each, of the
Chinese Numbers

81.48% (Linear
Kernel); 87.67%
(RBF Kernel)

Huang et al. [6], American
Sign Language

Support Vector Machine Hand, wrist, arm, shoulder
positions and velocities;
Distance separation be-
tween le� and right body
parts

100 pre-segmented ex-
amples of 10 di�erent
signs, gestured by 2
di�erent participants
(50 gestures each)

97%

Pizzolato et al. [11], Brazil-
ian Sign Language

Multi-layer Perceptron
(ANN)

Hand image a�er �nding
depth threshold for seg-
mentation

5000 samples of 10
di�erent le�ers, each
having 250 images
with hand cropping
and 250 without

100%

Zafrulla et al. [19], Ameri-
can Sign Language

4-state Hidden Markov
Models

Body pose and hand fea-
tures

555 seated samples,
including 207 corrupt
samples

95.16% before
factoring in
corrupt sam-
ples; 58.86%
a�er factor-
ing in corrupt
samples

155 standing samples,
including 9 corrupt
samples

94.49% before
factoring in
corrupt sam-
ples; 88.02%
a�er factor-
ing in corrupt
samples

Sarhan et al. [15], Arabic
Sign Language

3-state Hidden Markov
Models

Location, orientation, axes,
shape roundness, convex-
ity/concavity, rectangular-
ity and trajectory of hand

215 samples of 16 dif-
fernt words, signed by
4 di�erent participants

73.06%

4-state Hidden Markov
Models

78%

5-state Hidden Markov
Models

80.47%

Jangyodsuk et al. [7],
American Sign Language

Dynamic Time Warping Hand trajectory and hand
shape mapped as HOG
features

2226 gestures signed
by 2 participants

82.09% at top
10 rank; 92.54%
at top 30 rank

Santos et al. [14], Ameri-
can Sign Language

Dynamic Time Warping,
combined with Hidden
Markov Models

Hand contour shapes 12 dynamic hand ges-
tures

97.49%
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3.1 Support Vector Machine
A support vector machine (SVM) is a supervised machine learning
technique that is mostly used for classi�cation problems. Each
data item gets plo�ed as a point in an n-dimensional space, and a
hyperplane (a subspace of the space in n-1 dimensions) is found to
di�erentiate the data. �e clear division in the training instances
allows new data to then be classi�ed. Basic SVMs are usually
binary classi�ers, but they can be extended to support multi-class
classi�cation.

A relatively recent experiment [16] uses a combination of ’Or-
dinary’ features, along with special ’Kinect’ features. Together,
these features help �nd the position and shape of the hands, along
with the body pose. More speci�cally, the histogram of oriented
gradients (HOG) of the ’Ordinary’ features was extracted using an
already successful algorithm, as shown in [5]. Very brie�y, this
method involves dividing the image into small pixel regions. A�er
the gradient orientation (with respect to surrounding pixels) of
each pixel in the region has been approximated according to one
of nine orientation bins, 1D histograms of gradients in that image
portion are accumulated, in order to record local shape properties.
With regard to generating information about the hand, a 48x48
pixel region around the hand point is cropped, a�er which HOG
features are extracted on each patch of the region. For generating
hand motion, HOG features are extracted on patches of each frame.
�e remaining feature extraction focuses on aspects such as body
pose and is not relevant in our context.

For the classi�cation of the experiment in [16], a multi-class la-
tent SVMwas used. �is method is helpful in that it classi�es videos
of sign language gestures describing words/sentences. Hence, this
method would be geared towards the few le�ers of the SASL that
involve dynamic gestures. �e SVM has desired state values (dis-
criminative frames in the gesture videos), which are treated as the
latent variables (inferred, through a mathematical model, from vari-
ables that are directly measured) in the model. Once model learning
has taken place, the most discriminative and representative frames
can be found and classi�ed correctly.

�is method was implemented with two di�erent datasets (one
with words and one with sentences) and a total of 1971 phrase
videos and 1890 sentence videos were collected. �e test results
were favorable, and for words, the model using both ’Ordinary’ and
’Kinect’ features together reported the highest accuracy, at 86% (in
comparison to the model using just ’Ordinary’ features, which was
82.3% accurate). Two other baseline algorithms (SVMs combined
with either hard-assignment coding or so�-assignment coding)
were used for comparison, and it was found that with or without
the ’Kinect’ features, the SVM outperformed the other algorithms.
�e results for the sentence gestures were similar (with slightly
lower percentages due to transitions between words causing some
decrease in the accuracy).

A very similar studywas undertaken [1], involving both theHOG
feature extraction, and an SVM classi�er model. Very good results
were also obtained (with around 80% accuracy rates), however, this
experiment used simpler gestures - only those for the numbers 0-9
- and the dataset was much smaller than in the 2015 [16] study. It
was, perhaps unwisely, assumed that the same algorithms could
be extended to larger datasets to produce similar results. It was

also ’safely concluded’ (more likely to be an unsafe conclusion,
considering that the paper does not contain any direct comparisons
to, or even mentions of, other experiments) that the recognition
system created is faster than other techniques in hand tracking or
hand shape analysis.

Another research paper [6] also highlighted the training of an
SVM for a single-sign classi�er, which, too, returned high accuracy
results. �is study, however, biases the dataset in choosing only
gestures that involve arm movements, and not only individual
�nger movements, so as to make feature extraction easier. �is
defeats the purpose of working towards a system that would be able
to cater for an entire language, even though the accuracy results
are very impressive. Hence, this paper shows what to be aware of
in this regard of the project.

3.2 Arti�cial Neural Networks
An approach for classi�cation using arti�cial neural networks
(ANNs) is explored in [11], focusing on static gesture recognition.
What is interesting about this study is that it obtained 100% accu-
racy in testing.

�e process for segmentation entails using middleware, NITE,
by Primesense, and this enables the system to segment the image
to �nd all user pixels, as well as the user’s center of mass (CoM).
�e tested Brazilian sign language, Libras, involves hands held in
front of the torso, while possibly making contact with the face or
torso. To segment the user’s hands, a depth threshold is calculated,
to work like an invisible wall in front of the user. �is is called the
’Virtual Wall’ and is equal to the di�erence between the depth of
the CoM, and α (some o�set to avoid the wall being transposed by
the face or torso). Blobs that appear in front of this virtual wall can
then be extracted, and noise removed. To obtain the relevant blobs,
a linear time-component analysis must be applied [4]. A similar
approach is also described in [2], whereby the hand shape contour
is extracted.

A�er obtaining the relevant blobs, these are sorted in terms
of area, and classi�ed as hands: being right, le�, or dominant (if
only one hand is present). �e region of interest (ROI) is then
de�ned as the minimum rectangle enclosing the blobs. A heuristic
method de�ned in the paper as the Aspect Ratio Hand Cropping
Algorithm (ARHCA) is then applied to check and adjust ROIs, which
involves the aspect ratio of the blob. �e ARHCA method is meant
to improve accuracy by reducing, or ideally eliminating, the visible
arm from the blob.

�e static gesture classi�er involves a multi-layer perceptron
(MLP, an ANN that is an evolution of the standard perceptron),
which helps learn to distinguish between non-linearly separable
data. Input, hidden and output layer neurons structure this MLP,
and this model tries to map inputs to a subset of possible outputs.
Weights of the neurons store the knowledge of the network, and
these weights are determined through training of the system, with
the use of a backpropogation algorithm. �e basic structure of the
classi�er used had 625 di�erent inputs (which were all cropped
beforehand to equivalent resolution), 100 hidden neurons, and 5
di�ering outputs. Two groups of �ve di�erent le�ers were tested (in
total, the dataset contained 5000 samples), both with and without
ARHCA. �e tests run without ARHCA on the inputs produced
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accuracy results of between 60% and 75%, whereas the improved
inputs a�er using ARHCA produced perfect (100%) accuracy. Some-
thing worth noting in this result is that the hand cropping algorithm
only accounts for the hand pointing upwards, and so it would need
to be extended to work for gestures that require the hand to be in
another position. Aside from this, and that there is no mention of
how many users recorded the data in the dataset, the experiment
seems to be relatively successful.

3.3 Hidden Markov Models
An investigation [19] done on recognition and veri�cation of Amer-
ican Sign Language phrases was conducted using the Kinect, with
users in both standing and si�ing positions while performing the
gestures. For feature extraction of this process, both body pose and
hand features are extracted. Body pose features are extracted using
the OpenNI framework (which interfaces with NITE middleware).
More speci�cally, a hand feature is extracted by collecting all 3D
points in the neighbourhood of each hand and its position. For
each hand, these points are then clustered to obtain a mixture of
Gaussians. Principal Component Analysis is then performed to
reduce the dimensionality to that of the body pose feature. �is
dimensionality reduction aspect may only be necessary for sign
language that involves body poses, and so this aspect would not
apply to SASL.

A hiddenMarkov model (HMM) is a stochastic model of a system
containing hidden or unobservable states, and inwhich future states
depend only on the current state. For training and testing of the
investigated system in [19], 4-state HMMs were trained for each
of the 19 signs used in the investigation. �is was done using the
Georgia Tech Gesture Toolkit [18]. Recognition and veri�cation of
the trained models were then recorded using leave-one-out-cross-
validation (LOOCV), as described in [19].

�e recognition results, before accounting for tracking errors
of the data, are 95.16% and 94.49% for seated and standing data
respectively. �ere is a signi�cant amount of accuracy with li�le
di�erence between the two scenarios, however, this changes when
errors during data collection are factored in: accuracy for the seated
data drops to 58.86%, while the standing accuracy is less a�ected, at
88.02%. �is indicates that when users are seated, many more track-
ing errors are made than when users are standing, and obviously
results in a loss of accuracy and makes the standing position more
favorable. �e tracking errors are a result of the skeletal tracking
provided by OpenNI. Should users be in a seated position for the
SASL gesture recognition system, this framework may not be the
most ideal one to use for feature extraction, especially considering
that the body pose would not be required for recognition in SASL.

A more recent paper [15] explores the use of HMMs to recognise
Arabic Sign Language. Although this language uses the face, eyes
and body to enforce the signs and their meanings, the study still
focuses on the main component of the signing: the hands.

To extract features of the hands, the signer is �rst segmented
from the image, using the Kinect’s segmentation mask. �e hands
are then segmented from this according to depth and skeletal infor-
mation, a�er which, various scale, rotation and translation features
of the hand are measured. �ese include the location, orientation,

major and minor axes, shape roundness, convexity or concavity,
rectangularity, and gesture trajectory of the hand.

�e proposed system was tested using 3-, 4- and 5-state HMMs.
An increase of the number of states shows an increase in accuracy:
the 5-state HMM achieved an accuracy rate of 80.47%, the highest
of the three, while the 3-state HMM had the lowest recognition,
at 73.06%. �e tested dataset contains 215 instances of 16 di�erent
word gestures by 4 di�erent individuals, who each performed each
gesture at least 3 times. Varying the user’s distance and position
from the camera, background and the lighting condition through
each gesture was done to strengthen the recognition of the system.

3.4 Other methods
An algorithm for classi�cation that is not a machine learning tech-
nique, but is still popularly used for gesture recognition, is Dy-
namic Time Warping (DTW). �is algorithm is used to �nd an
optimal alignment between two given time series (time-dependent)
sequences under certain restrictions.

In a study regarding American Sign Language recognition [7],
Histogram of Oriented Gradient features and DTW are used. Due
to the fact that DTW is a distance measure, no training is required,
which helps in systems where the number of training examples is
not big.

�e method of sign recognition involves two kind of features:
hand trajectory (which incorporates hand positions relative to the
face, and their velocity vectors) and hand shape (in this case, HOG
features, similar to the case in Section 3.1). �e HOG features
are matched with signs using the Euclidean metric as the distance
metric in the DTW algorithm (used as in [17], which deals with a
vocabulary sign search, but not with the use of a depth sensor like
Kinect).

�e testing done with the Kinect camera was done with a dataset
of 2226 signs by 2 signers. An accuracy of around 82% was recorded
at top 10 rank (10 signs need to be looked up before �nding correct
matches at 82% accuracy) for the Kinect data, and this improved to
92% for the top 30 rank.

An interesting approach, named HAGR-D, that combines the
DTW with HMM using depth maps is explored in [14]. �e hybrid
approach is motivated by the fact that DTW is not very sensitive to
pa�erns that are very close, and thus could result in some mistakes.
DTW �rst classi�es the gesture, using an algorithm for feature
extraction involving hand contour shapes. �e closest gestures to
the input sequence are then returned and the HMM decides on the
classi�cation of the input sequence between the candidate gestures
returned by the DTW process.

�e publicly available MSRGesture3D dataset, of 12 dynamic
hand gestures in American Sign Language, was used and tested with
LOOCV on the hybrid system. Overall, the classi�cation process
achieved an accuracy of 97.49%. �is is a very high level of accuracy,
although very few gestures were used in this dataset, which may
have biased the result.

Another e�ective way to make gesture recognition more robust,
in terms of feature extraction, is to track the hand through data
gloves, but these are then required to be worn by the users, and
could hinder gesture movements. Additionally, they need to be
calibrated before use, and are generally expensive, making them a
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less popular way of hand gesture recognition [13]. �us, methods
that involve data gloves together with the Kinect are not considered
in this review.

4 COMBINING KINECTWITH LEAP
Combining the output of Kinect with that of another sensor could
increase the accuracy of gesture recognition. �e Kinect has been
combined with the Leap Motion device [8] to show this.

In this process, the hand is extracted from depth and colour data
from the Kinect, a�er which correlation and curvature features are
extracted (the process is described in detail in [8]). From the Leap,
positions of �ngertips (3D positions), the palm center (in terms of
3D space), and hand orientation details (which are based on the
unit vectors parallel and perpendicular to the hand) are acquired.
Using this information, the �ngertip angles (angles of �ngertips
with respect to hand orientation), �ngertip distances (3D distances
of �ngertips from hand center) and �ngertip elevations (distances of
�ngertips from the plane corresponding to the palm) are introduced.
�e �ve features from the Leap and Kinect are then used, together
with the dataset, to train a multi-class SVM.

1400 di�erent data samples (of 10 di�erent gestures performed
by 14 di�erent people) formed the fairly-sized dataset. Various
combinations of the features pulled from the di�erent devices were
then tested using this data. �e accuracy of the three Leap features
together is 80.86%, and the accuracy of the two Kinect features is
89.71%. Combining all �ve features gives an improved (slightly
from the Kinect, but signi�cantly from the Leap) result of 91.28%
accuracy. Clearly, there are properties from each device which
contribute to making recognition more accurate.

Another paper [10] also presents a way to fuse data from the
Leap and Kinect for the tracking of hand motions. It incorporates a
calibration method (using the Corresponding Point Set Registration
algorithm for rigid transformation, as presented in [3]) to align the
two di�erent frames of reference (3D coordinates of the hand) out-
pu�ed by the Leap and Kinect. �e operating range gets extended
through this, as �ngertips locations are still provided when the
hand is not completely visible to the Kinect. Although it does not
particularly investigate the usage of this fusion for sign language
purposes, it could serve as a potential feature extraction method.

5 CONCLUSIONS
Many di�erent methods of data extraction from the Kinect, as well
as methods of classi�cation of the data extracted, exist. Each of
these come with their own strengths and weaknesses, as is clear in
this review.

Overall, one of the most ideal methods for the SASL gesture
recognition project seems to be the one used in [11], both in terms
of the classi�cation and extraction of features. Even though this is
the only study referenced that focuses on ANNs, it is also the only
study with perfect accuracy due to its ARHCA algorithm in the
data extraction process. �e experiment involved static gestures,
and so this method would be particularly useful for the majority
of the SASL alphabet signs are static. Hence, this algorithm can
be combined with, or altered according to, other e�ective meth-
ods presented that involve dynamic gestures (such as the feature
extraction method in [1]).

�e support vector machine seems to be another commonly used
and e�ective method of classi�cation for gestures. Along with HOG
features, the experiment in [16] proved to be fairly successful with
one of the much larger datasets and more than a few users.

Hidden Markov model classi�cation is another commonly used
method, and produced high accuracy, especially in [19]. �e results
were only let down by the OpenNI framework, which indicates that
this is not ideal to use for extraction of features.

A combination of classi�cation methods may also prove to be
useful, as seen in [14], which combines a machine learning tech-
nique with a time series analysis algorithm to improve classi�cation
accuracy. Additionally, as will be explored in later phases of the
project, the Kinect can also be combined with other motion sensors,
such as the Leap, so as to extract and concurrently use information
unique to each device, in order to improve gesture recognition.

�ere are most de�nitely many options and variables to consider
when creating a system for SASL gesture recognition using the
Kinect. However, the material discussed in this review clearly
guides the way forward on HANDGR, which should prove to be an
exciting, and potentially very useful, project.
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