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ABSTRACT 

This review identifies a gap in the literature left by the lack of 

studies on applying electromyographic (EMG) sensor based 

gesture recognition to gestures from the South African Sign 

Language (SASL) alphabet. The Myo is a commercially available 

application of EMG-based gesture recognition, and includes 

inertial measurement unit sensors. It can be used to develop a tool 

to teach the hearing SASL alphabet gestures. It is currently very 

expensive for the hearing to learn SASL, hence the need for a tool 

to help bridge the communication divide between them and the 

Deaf. The technology is not currently able to interpret the full 

body expression required for speaking SASL, therefore this tool 

focusses on the subset it is ready for. Previous studies have poorly 

reported their data processing for the classifiers used to recognise 

these gestures. Five classifiers should be explored, namely 

artificial neural networks, Bayesian linear classifiers, K-means 

clustering, hidden Markov Models and linear discriminant 

analysis. It appears that will be the first study to use Bayesian 

linear classifiers in this context. Additionally, this tool should 

seek to balance qualitative and quantitative methods of analysis 

for this tool to compensate for the heavy quantitative focus of 

previous studies.  

General Terms 

Algorithms, Measurement, Performance, Reliability, 

Experimentation, Human Factors, Theory, Verification. 

Keywords 

Gesture recognition, electromyogram, Myo, South African Sign 

Language. 

1. INTRODUCTION 
In recent years, there has been a drive to make the development of 

interfaces between humans and computers more naturalistic. 

Voice recognition, eye-motion detection, and gesture recognition 

are all examples of this development. These technologies have 

been applied in various settings, including, medicine [5], music 

[17, 24] and automobiles [2]. The common goal has been to make 

computer use as simple as possible, so that users need not learn 

how to interact with new systems. However, these technologies 

can also be applied to bridging social divides. 

There currently exists a communication barrier between the Deaf 

and hearing communities. The former use sign languages as 

opposed to spoken languages to communicate. Historically, this 

difference has produced some discord between the linguistic 

communities, resulting in the Deaf experiencing a reduced set of 

social opportunities [20]. In addition to this, most of the Deaf 

schools in South Africa implement a policy known as Total 

Communication [15]. This entails using both spoken and sign 

languages in the classroom. According to [15], this contributes to 

the communication barrier between the Deaf and hearing. In 

addition to this, as of 2010, South African Sign Language (SASL) 

was not recognised as a subject in the South African primary and 

secondary education system [15]. This also makes the barrier for 

the hearing to learn SASL higher than it should be, further 

contributing to the communication barrier. As it stands, learning 

SASL is a costly exercise, as it requires a trained SASL teacher, 

whose fees are understandably high. 

Given all these factors, a possible means of whittling away at the 

communication barrier would be to make learning SASL more 

affordable and accessible to the hearing. Such a system would be 

required to interpret signs; hence gesture recognition technology 

would be well suited to addressing this need. 

Sign languages make use of the entire body to communicate: 

facial expression, arm and hand positions, gestures and body 

posture all merge to communicate meaning. As it stands, gesture 

recognition cannot address all these components in a simple, easy-

to-use, commercially available system. However, the alphabet for 

SASL is designed to be gestured with one hand. A system for 

recognising these gestures could be used to form the beginnings 

of a tool for teaching SASL to the hearing. 

In the past, several projects from all over the world have sought to 

bridge the divide between the Deaf and hearing [3, 6, 7, 11, 12, 

16, 18, 22, 25, 26]. This review seeks to determine how to apply 

the insights from the aforementioned studies to the South African 

context using commercially available gesture control 

technologies. 

Gesture recognition can be realised using various mediums, and 

has made significant advances in recent years [4], making this the 

ideal time to begin this research. There is evidence to suggest that 

devices which make use of electromyographic (EMG) sensors can 

be adapted particularly well for this use [3, 26]. The Myo 

armband is a commercially available example of the use of EMG 

sensors in gesture recognition devices. 

The Myo armband is a wearable gesture and motion control 

device which makes use of eight EMG sensors, a 3D gyroscope 

(gyro), a 3D accelerometer (ACC) and a magnetometer (MM). 

The EMG sensors measure muscle tension in the forearm, while 

the other three sensors contribute to an inertial measurement unit 

(IMU). The device uses a Bluetooth connection to connect to a 

digital device, such as a phone, tablet, laptop or PC [23]. The data 

produced by the Myo requires pre-processing and segmentation 

prior to feature extraction. These features are then inputted to 

classifiers to determine which gesture has just been performed. 



This work proposes to make use of this armband to recognise 

South African Sign Language (SASL) letters. 

The following literature review will cover an analysis of the 

technical and experimental designs of previous studies. These 

analyses will serve to motivate the choice of hardware and other 

factors involved in developing this tool. 

2. TECHNICAL DESIGN 
Various EMG technologies, data pre-processing, data 

segmentation, feature extraction and gesture classifiers have been 

used in past studies with a variety of results. For the Myo alone, 

results vary from 100% person-dependent accuracy of gesture 

recognition for Sinhala [14] to being judged to have low accuracy 

for fine gestures, with the potential to produce high accuracy 

results for dynamic gestures [1]. Each of these factors offer insight 

as to how the investigation into the best implementation of this 

tool should unfold. 

2.1 Hardware 
The many hardware configurations used in previous research offer 

insight into the desired characteristics of the hardware for this 

tool. In 2007, [8] discovered there is a 5 – 10% improvement in 

recognition of hand gestures when both EMG and IMU sensors 

are used as opposed to only EMG sensors [8]. This is confirmed 

by the difference in results between [13] and [19], as can be seen 

in Table 1. Both studies used custom-made hardware with four 

EMG sensors. However, only [19] made use of an IMU sensor, 

specifically an accelerometer [13, 19]. When more EMG sensors 

and a gyroscope are included in the hardware specification, the 

results for these studies become more consistent [9, 10, 12]. Thus, 

as the only widely available commercial gesture control device 

with EMG sensors, an accelerometer and a gyroscope, the Myo 

has been selected as the hardware of choice for this tool.  

 

Table 1. A comparison between the results obtained by different studies based on the hardware they employed 

Key 

Information given Information not applicable Information not given 

 

 Custom/ commercial EMG sensors  Muscle IMU Results 

[1] Commercial (Myo) 8 N/A 

3D ACC 

3D gyro 

MM 

Low accuracy for fine gestures 

Potential for dynamic gestures 

[3] Commercial (TMS porti) 8 N/A N/A 95% accuracy 

[8] Custom 2 

M. extensor indecis 

M. extensor pollicis brevis 

M. extensor pollicis longus 

M. abductor pollicis longus 

M. extensor digitiquinti proprius 

M. digitorum communis 

M. extensor carpi ulnaris 

Two 2D 

ACCs 

Improved by 5-10% when 

including IMU measures. 

[9] Custom 16 

M. extensor digitorium communis 

M. extensor digiti minimi 

M. extensor pollicis brevis 

M. flexor digitorum profundus 

M. flexor digitorum superficialis 

N/A 

97.8% session-independent 

accuracy 

74.3% user-independent 

accuracy 

[10] Custom 4 Not given 
3D ACC 

Gyro 

92.6% accuracy (air gestures) 

88.8% accuracy (surface 

gestures) 

[11] Custom 2 
M. flexor carpi radiallis 

M. flexor carpi radiallis brevis N/A 97.7% accuracy 

[12] Custom 8 Not given 
Two 3D 

ACCs 
95.78% accuracy 

[13] Custom 4 Not given ACC 

95% user-dependent accuracy 

89.6% user-independent 

accuracy 

[14] Commercial (Myo) 8 N/A 

3D ACC 

Gyro 

MM 

100% user-dependent accuracy  

94.4% user-independent 

accuracy 

[19] Custom 4 

Brachioradialis 

M. flexor carpi radiallis 

M. flexor carpi ulnaris 

M. flexor digitorum superficialis 

N/A 
84.83% sensitivity 

88.1% specificity 

[21] Commercial (Myo) 8 N/A 
3D ACC 

Gyro 
88.2% accuracy 



MM 

[22] Commercial (Myo) 8 N/A 

3D ACC 

Gyro 

MM 

94 – 98% accuracy 

[26] Custom 5 

M. extensor digiti minimi 

Palmaris longus 

M. extensor carpi ulnaris 

M. extensor carpi radiallis 

Brachioradialis 

3D ACC 

93.1% word accuracy 

72.5% sentence accuracy 

97.6% user-dependent accuracy 

90.2% user-independent 

accuracy 

 

One of the shortcomings of the Myo is that one cannot control 

from which muscles the EMG sensors receive input from. As 

demonstrated in [8] and [11] (see Table 1), the control of this 

variable can mean that with fewer sensors a study can achieve 

results comparable with studies which used more, such as [9, 19] 

and [26]. Studies with the Myo have only been able to enforce its 

general placement, specifically the forearm [1, 14, 21, 22]. 

However, this limitation does not seem a serious drawback, as a 

study with similar technology achieved a 95% accuracy rate for 

recognition of Thai sign language alphabet gestures [3]. Accuracy 

rate refers to the the percentage of gestures performed which are 

correctly classified. The only study with the Myo which produced 

poor results is [1]. This is also one of two studies which made use 

of supervised vector machines (SVMs) [1, 19]. Both studies 

obtained lower accuracy rates than the other studies reviewed 

here. The key to replicating these high accuracy rates therefore 

appears to lie within the combination of data pre-processing and 

segmentation, feature extraction and classifiers used. 

2.2 Data pre-processing, segmentation and 

feature extraction 
One of the primary failings of previous studies has been in 

reporting the details of the pre-processing, segmentation and 

feature extraction the recorded data has undergone prior to being 

processed through a classifier. Of those segmentation methods 

described, the moving average algorithm and thresholding, or a 

combination thereof, appear to be the most popular [8, 12, 13, 14 

22, 26]. This is probably because of the moving algorithm’s 

ability to smooth out short-term fluctuations and draw attention to 

the long-term behavior of the data. As can be seen in Table 2, the 

moving average algorithm can also be used for processing the data 

prior to segmentation [13, 14]. Other forms of pre-processing 

include full wave rectification of the signals, Z-normalisation and 

the Butterworth Filter. Unfortunately, due to poor reporting on 

data pre-processing and segmentation it is difficult to ascertain 

when is best to use these methods. Therefore, the best approach 

the development path for this tool can take is to explore the 

methods which have used in studies with similar hardware (and 

therefore similar data), and only examine methods beyond these 

should their performance be suboptimal in the context of an 

extracted feature set and/ or classifier. 

Feature extraction has been better reported than either data pre-

processing or segmentation. The most common feature utilised, 

regardless of the classifier to be used, appears to be the mean 

absolute value (MAV) [3, 10, 12, 13, 14, 26] and the standard 

deviation (SD) [9, 14, 26]. MAV is typically used to show the 

magnitude of the data in the window when the baseline of the data 

is equal to 0 [3]. Other components are then utilised to represent 

the rest of the data within the same window. Autoregressive 

regressive (AR) coefficients are sometimes used for this purpose 

[13, 26], although different ones are used in each instance. The 

choice here ultimately depends on the classifier, although there is 

no clear relationship between the extracted features and the choice 

of classifier.  As with the methods for data pre-processing and 

segmentation, this means that the when developing this tool one 

should first explore those feature sets which have been used in 

studies with similar hardware before exploring other methods. 

 

Table 2. A comparison between the results obtained by different studies based on the data pre-processing, segmentation and feature 

extraction methods used 

Key 

Information given Information not given 

 

 Pre-processing Segmentation Feature extraction Classifier 
Size of 

training set 
Results 

[1] 

Full-wave 

rectification on 

training set 

Compute the 

mean of each 

training set 

Not given Not given SVM 570/gesture 

Low accuracy for fine 

gestures 

Potential for dynamic 

gestures 

[3] Not given Not given 
MAV 

Moving variance 
ANN 100 95% accuracy 

[8] Not given Moving average Not given BLC >100/gesture 

Improved by 5-10% 

when including IMU 

measures. 

[9] 
Normalise the 

signals of both 
Not given 

Sliding window for 

both. 

Continuous 

density HMM 
4500 

97.8% session-

independent accuracy 



sensors using Z-

normalisation 

Average value (IMU) 

and SD in each window 

(EMG) 

74.3% user-

independent accuracy 

[10] Not given Not given 

MAV 

Zero crossings 

Slope sign changes 

Waveform length 

LDA 200 

92.6% accuracy (air 

gestures) 

88.8% accuracy 

(surface gestures) 

[11] Not given Not given 

Integral pf absolute 

value 

Difference of absolute 

mean value 

k-th order zero-

crossings 

Kurtosis 

AR coefficients 

Mean frequency 

Waveletmoms0-2 

Wavelet difference 

MAV 

Wavelet zero-crossing 

of 2nd order 

Mahalanobis 

distance 

criterion 

Discriminant 

analysis 

Not given 
97.7% 

accuracy 

[12] Not given Moving average 

Normalised data 

segments (IMU and 

EMG) and MAV 

(EMG) 

Gaussian 

mixture model 

Multi-stream 

HMM 

K-means 

clustering 

LDA 

2420 95.78% accuracy 

[13] 
Moving average 

(IMU) 

Active signal segments 

(ASS) for EMG used to 

estimate IMU ASS 

which is then used to 

calculate the IMU 

segment using an on 

and offset threshold 

MAV and third-order 

AR for EMG 

 

DSA, DGA and DIA 

(see [13] for formulaic 

definitions) for IMU 

 

Combined into single 

vector 

BLC 

HMM 

640/ small-

scale gesture 

200/ large-

scale gesture 

95% user-dependent 

accuracy 

89.6% user-

independent accuracy 

[14] 

Remove any DC 

offset, then 

apply full wave 

rectification, 

then put signal 

through 

Butterworth 

Filter (EMG) 

 

Moving average 

(IMU) 

Manual 
MAV and SD (EMG 

and IMU) 
ANN 150/gesture 

100% user-dependent 

accuracy  

94.4% user-

independent accuracy 

[19] Not given FastICA Not given Twin SVMs 24/ gesture 
84.83% sensitivity 

88.1% specificity 

[21] Not given Not given 
Tenth-order Daubechies 

wavelets 
ANN 60/ gesture 88.2% accuracy 

[22] Not given 
Dynamic window 

sampling 

Aggregate data from all 

sensors into single 

signal 

LDA 

k-nearest 

neighbours 

10/ gesture 94 – 98% accuracy 

[26] Not given 

Active signal segments 

(ASS) for EMG used to 

estimate IMU ASS 

which is then used to 

calculate the IMU 

segment using an on 

and offset threshold 

MAV and fourth-order 

AR (EMG) 

 

Normalised IMU ASS, 

Mean value,SD of each 

axis (IMU) 

Parameter 

estimation 

Two stream 

HMM 

K-means 

clustering 

LDA 

100/ gesture 

93.1% word accuracy 

72.5% sentence 

accuracy 

97.6% user-

dependent accuracy 

90.2% user-

independent accuracy 



2.3 Gesture classifiers 
The classifiers are the machine learning algorithms which are used 

to identify gestures. One of them, SVM, has already been 

discussed, and concluded to perform poorly for the type of data 

which is extracted from the Myo. Alternative methods for gesture 

classification include linear discriminant analysis (LDA) [10, 12, 

26] hidden Markov models (HMMs) [9, 12, 13, 26], artificial 

neural networks (ANNs) [3], Bayesian linear classifiers (BLCs) 

[8, 13] and K-means clustering [12, 26]. ANNs [3], K-means 

clustering [12], LDA [12, 22, 26], and HMMs [12, 26] have all 

been used to examine sign languages in the past, therefore it 

appears that the development of this tool will be the first time 

BLCs have been used to recognise sign gestures. These classifiers 

have been used to produce recognition accuracy of over 90% for 

gestures. It is difficult to compare the context in which these have 

been used, given the poor reporting on data pre-processing, 

segmentation and feature extraction. However, we can compare 

the performance of these algorithms in terms of the amount of 

training they undergo.  

 

Overall, significantly higher accuracy rates can be obtained when 

the training set contains >=100 recordings per gesture, as opposed 

to <100. For example, Table 2 shows that the ANN in [21] 

performs worse than the ANN in [3] or [14]. Based on the 

reported data pre-processing, segmentation and feature extraction, 

the primary algorithmic difference which can account for the 

poorer performance of [21] is the fact that it undergoes less 

training than [3] and [14]. HMMs appear to require the most 

training out of the studies reviewed here.  

 

One of the advantages of a BLCs is its probabilistic 

underpinnings, which makes it easier to gauge how confident your 

classifier is of its output. This information makes tuning the 

classifier easier than in the case of classifiers such as ANNs. It is 

important to be able to tune the algorithm properly to ensure that 

it is not pre-maturely discarded before the optimal tuning has been 

found. ANNs, on the other hand, are better researched and easier 

to implement because of the extensive library support across 

languages in comparison to BLCs. Faster and more sound 

implementations mean that more progress can be made in 

exploring the usability of the classifier in this context. HMMs 

make merging implementations which recognise individual 

structures to recognise sequences of structures is relatively easy to 

do. This is advantageous in the context of this tool, as it means 

HMMs have the potential to recognise sequences of letters, and so 

spell out words. However, as already mentioned, HMMs require 

more training than other approaches. Of the approaches covered 

here, K-means clustering has the potential to be the fastest, as its 

implementation is O(n). This means that it will potentially make 

the tool more responsive and hence more useable than any of the 

other approaches. However, if its resultant clusters are of various 

sizes and densities it tends to perform poorly. 

3. EXPERIMENTAL DESIGN 

3.1 Sample population 
As illustrated in Table 3, the maximum number of participants 

recruited for data gathering in the studies reviewed here was 

twenty [13]. Most of these, however, employed fewer than ten [1, 

8, 9, 12, 14, 19, 21, 26]. It is difficult to establish how drastically 

the number of participants may have affected the outcome of these 

studies, given the variation in algorithmic variables discussed 

previously. Therefore, the when developing the training dataset, 

the number of participants recruited to generate the data can be 

minimised, provided the resulting data set contains at least 100 

recordings per gesture. By minimising the number of participants, 

one can minimise the effect of the Myo’s limitations. In other 

words, the fact that one cannot control which muscles are focused 

on by the Myo’s EMG sensors will not be an issue if the 

participant pool is small enough. The handedness of participants 

has not been well documented, but when reported, right 

handedness appears heavily favoured [11, 12, 14, 19]. 

3.2 Gestures 
Of those studies which focus on sign languages, the majority used 

either dynamic or both dynamic and static gestures [3, 11, 12, 14, 

22, 26]. Therefore, the tool can be used to recognise both static 

and dynamic SASL letters, as it was possible to achieve high 

accuracy rates for the recognition of both gesture forms. Given 

that this is the case, it would be best to utilise all the gestures 

within the alphabet. This will ensure that the tool will be as useful 

as possible within the scope of this undertaking. Once the system 

has been trained, it does not appear as though very much training 

is required for user-specific testing.  

 

Table 3. A comparison between different studies based on the gestures used 

Key 

Sign language Other Static Both Dynamic 

 

 Sign language/ other 
Number of gestures 

sampled 
Dynamic/ static gestures Results 

[1] Brazilian Sign Language 20 letters Static 
Low accuracy for fine gestures 

Potential for dynamic gestures 

[3] Thai Sign Language 10 letters Static 95% accuracy 

[8] Other 24 gestures Both 
Improved by 5-10% when including IMU 

measures. 

[9] Other 12 gestures Dynamic 
97.8% session-independent accuracy 

74.3% user-independent accuracy 

[10] Other 
8 air gestures 

4 surface gestures 
Both 

92.6% accuracy (air gestures) 

88.8% accuracy (surface gestures) 

[11] American Sign Language 9 words Both 97.7% accuracy 



[12] Chinese Sign Language 121 sub-words Both 95.78% accuracy 

[13] Other 
4 fine 

15 large 
Both 

95% user-dependent accuracy 

89.6% user-independent accuracy 

[14] 
Sri Lankan Sign 

Language (Sinhala) 
12 words Both 

100% user-dependent accuracy  

94.4% user-independent accuracy 

[19] Other 7 gestures Static 
84.83% sensitivity 

88.1% specificity 

[21] Other 17 gestures Dynamic 88.2% accuracy 

[22] American Sign Language 20 words Dynamic 94 – 98% accuracy 

[26] Chinese Sign Language 
72 words 

40 sentences 
Dynamic 

93.1% word accuracy 

72.5% sentence accuracy 

97.6% user-dependent accuracy 

90.2% user-independent accuracy 

 

3.3 Evaluation 
The final stage of any project is the evaluation of the final system. 

There are numerous methods by which this can be done, both 

qualitative and quantitative. The latter of these is the more 

common, but the former provides invaluable insight too.  

3.3.1 Qualitative 
Qualitative analysis of a system offers deep insights into its value 

and usability. A preliminary report on a project exploring using 

gesture control technology within the context of surgery, [5], used 

qualitative feedback to motivate future research into the 

application of the technology to the field. Similarly, a study on 

using gesture control technologies in live music performances 

provided an understanding of the value offered by the application 

[17]. These insights cannot be gained through using quantitative 

analyses alone. Both studies made use of participants’ 

observations to gain the insights, but questionnaires and focus 

group discussions are other potential sources. The developers of 

this tool should explore the benefits of these methods and use at 

least one to evaluate the system’s value. Many of the studies 

published have instead focussed on analysing the system with 

quantitative statistics. 

3.3.2 Quantitative 
The results of data segmentation have an impact on the final 

performance of a classifier, however, it appears many previous 

studies have neglected to assess the product of this stage. 

Understanding the performance of the data segmentation 

processes helps to assess the data gathering exercise. For example, 

[12] and [26], could establish the appropriate on and offset 

threshold for segmenting the data by determining that noise was 

the dominant factor in data recording. This strengthens the value 

in the results of both studies, the threshold values can be 

confirmed to be optimal. This body of work should assess the 

results of data segmentation to ensure that maximum 

understanding of the interplay between it and later stages of the 

process. 

When the feature set used in a study is somewhat complex, there 

are two primary statistical tools for establishing which of the 

features contributed most to the classification of gestures. This 

can help to eliminate features which confound the identification of 

gestures. Discriminant analysis is one of the most powerful of the 

tools for doing this used in past studies [11]. This tool allows one 

to predict one’s categorical dependent variables using continuous 

or binary dependent variables. In the case of [11], it helped to 

identify the features which were most significant when 

recognising American Sign Language gestures. If one has a priori 

knowledge, however, one need not necessarily use a statistical 

tool for a small feature set. [13] could achieve these same insights 

through observations rather than statistics as the feature set they 

used was significantly smaller than that of [11]. Without a priori 

knowledge, however, one can still discover relevant features to 

the classification. For this, the Principal Component Analysis is 

the statistical tool of choice [10]. When developing this tool, a 

healthy combination of all three techniques will probably be the 

best approach, given that there will be a degree of 

experimentation in finding the best features to use for each 

classifier. 

After training a classifier on test data, users will have to be 

recruited to assess the system. The most common quantitative 

measure taken from these assessments seems to be the accuracy 

with which the tool recognises the gestures performed [1, 3, 6, 16, 

19]. Accuracy here refers to the number of times the user’s 

gesture is correctly identified by the system relative to the number 

of times the user produces the same gesture as a percentage. In 

other words, if the user produces the SASL sign for ‘A’ ten time, 

and the system correctly identifies it nine times, the system will 

have an accuracy rate of 90%. The robustness of the system can 

be superficially assessed using this measure through the 

experimental setup. An accuracy rate can be taken for user 

dependent [13, 14] and independent [9, 13, 14] scenarios, as well 

as session dependent and independent scenarios [9]. A 

shortcoming of previous studies has been to not adequately 

control for both variables (user and session). Controlling for both 

lends insight into the strengths and weaknesses of the classifiers, 

hence should be done in the course of developing this tool. 

4. CONCLUSION 
To conclude, the Myo is the optimal EMG-sensor based gesture 

recognition hardware to implement a tool for teaching the SASL 

alphabet in. It has been used in previous studies which applied 

gesture recognition to sign languages [1, 14, 22, 26], but appears 

to have not yet been applied to SASL.  

Inconsistencies in the documentation of data pre-processing, 

segmentation and feature extraction in previous studies mean that 

several approaches will need to be explored in order to find the 

optimal combinations. Classifiers, however, have been well 

documented. Previous publications suggest that SVMs would be a 

poor classifier to use for this tool, but that ANNs, HMMs, LDAs, 



BLCs and K-means clustering are worth exploring. HMMs appear 

to require more training than the other algorithms, and this will 

have to be considered when developing the training dataset. 

All of the gestures in the SASL alphabet should be included when 

developing the training dataset. Participation levels from previous 

studies suggest that there need not be too many participants 

involved in generating the training dataset. This means that the 

limitation of the Myo, namely that it can’t easily be focused on 

specific muscles, can be minimised.  

Overall, in developing this tool, several gaps in the literature will 

be filled. Application of an EMG-sensor based gesture recognition 

solution to the SASL alphabet and thorough documentation on 

data pre-processing, segmentation and feature extraction are two 

of the addressed gaps. The immediate future of the tool’s 

development will involve developing the test dataset and 

assessing the suitability of the five classifiers for the tool using a 

mix of qualitative and quantitative analyses. 
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