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ABSTRACT
Sign language facilitates communication both within the commu-
nity and between the deaf and the hearing. Sign language recog-
nition can be used to ease the learning of sign language, or even
to circumvent it altogether. This paper provides a review of the
current literature of the use of the Leap Motion Controller (LMC)
to interpret sign language and a comparison of methods and their
resulting accuracies. The classification algorithms explored include:
k-Nearest Neighbour, Support Vector Machine, Random Forests,
Artificial Neural Networks, Bayesian algorithms, and Linear Dis-
criminant Analysis. The most promising combination of variables,
across different sign languages, seems to be the SVM with sequen-
tial feature selection.
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1 INTRODUCTION
Sign Language is important, but learning languages is difficult. For
this reason, computers and various input devices have been applied
to create the field of automatic sign language recognition (SLR).

Over the last several years, the scene of the hand gesture recogni-
tion field has changed due to the emergence of several depth based
devices, for example, the Microsoft Kinect and the Leap Motion
Controller (LMC). This paper will focus on reviewing the literature
concerning the use of the LMC to recognize sign languages. The
chosen methods and their results will be compared in order to find
the most successful approaches.

A wide selection of research about the LMC in relation to sign
language recognition is available. The LMC has been used to recog-
nise several sign languages, including Greek Sign Language (GSL)
[19], Arabic Sign Language (ArSL) [8, 14, 15], Chinese Sign Lan-
guages [23], American Sign Language (ASL) [5, 9, 11–13], and South
African Sign Language (SASL) [18]. Most studies have focused on
fingerspelling, as this does not usually require arm movement or
facial expressions, so these similarities are assumed to be enough
to allow a meaningful comparison.

Section 2 will give an overview of sign language recognition
using the LMC, then section 3 along with tables 1 and 2 will sum-
marise the approaches and results of the experiments, and in section
4, a discussion of the results is provided.

2 OVERVIEW
The LMC is a depth based hand recognition tool. Its API provides
some predefined gestures, and outputs a set of features, but no

raw depth map data [16]. This simplifies testing, but LMC’s own
recognition software has problems, as described by Potter et al. [16].
Most importantly for the scope of fingerspelling, the Leap software
struggles with representing the hand accurately when some fingers
are obscured, or if two fingers are too close to one another [16]. It
is not clear whether Orion (LMC software update) addresses these
issues. A broader problemwith using the LMC for SLR is that it does
not recognise facial expressions which is extremely important for
sign language users [2, 10, 22]. It is possible that the first problem
may be remedied by facing the LMC more directly to the gestures,
either by moving the device or by facing the gestures towards
the camera. Mohandes et al. [15] used two perpendicular LMC
devices, however the performance was not increased drastically
when compared to other approaches.

Use of Machine Learning
The use of machine learning helps overcome several difficulties. For
example, it can help with some shortfalls of the LMC, it can handle
the complex and numerous sign language gestures [6], and it can
handle with the different ways people repeat a particular sign [14].
Because of the necessity of using machine learning for the present
task, this paper will only review classification algorithms based on
machine learning.

3 RESULTS
Broadly, the literature deals with feature extraction, and gesture
classification. A variety of both variables have been used in the
literature, as can be seen in tables 1 and 2. As mentioned previously,
the data set generally consisted of some fingerspelling gestures,
and the testing was done using some form of cross validation. The
size of the data set varied significantly from author to author, but
remained constant between two papers of the same author, allowing
for easier comparison.

Classification
In the literature, most of the machine learning has been focused
on the classification stage of recognising a gesture from Leap data.
This section will briefly describe these algorithms and state the
range of accuracies these algorithms achieved.

Support Vector Machine (SVM). This is the most popular algo-
rithm in the literature for classification of the gestures [4]. The SVM
algorithm finds a hyperplane that separates two classes cleanly, and
with as much margin as possible [1]. The SVM method is successful
for both static and dynamic gestures [4]. This method was used by
Chuan, Marin, and Simos, and they all found accuracies ranging
from 79% - 99%. Quesada et al. found similar accuracies to Chuan
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et al. [17], however they did not state an overall accuracy of their
proposed system.

Neural Networks (ANN). The multi layer processor (MLP) neural
network, in this case, takes features as input, processes them in a
hidden layer, and outputs decisions [7]. The MLP method is more
successful with static gestures than dynamic [4]. This method was
used by Mohandes, Elons, and Mapari, and accuracies ranging from
82% - 99% were found.

k-Nearest Neighbour (kNN). The kNN algorithm uses the Eu-
clidean distance between an instance and a class’s attributes as a
measure of similarity [20]. The kNN algorithm is good for both
static and dynamic gestures [4]. This was used by Chuan et al. and
Clark et al. who achieved accuracies of 72.78% and 82.5% respec-
tively.

Random Forests (RF). The RF algorithm uses a set of trees for
prediction, where each tree depends on a vector sampled randomly
from the same distribution [3]. This method is more successful
with dynamic gestures than static gestures [4]. Marin et al. got an
accuracies from 57% to 94% using Random Forests, depending on
what features were selected.

Naive Bayes Classifier (NBC). TheNBC algorithmuses the Bayesian
formula P(A|C1)...P(A|Cn ) = 1 to predict the probability of an event
happening, given other events and their probabilities [14]. Mohan-
des et al. achieved about 98% accuracy using this method.

Dempster-Shafer (DS). The DS algorithm generalises the Bayes
algorithm by adding an uncertainty term, θ so the equation looks as
follows: P(A|C1)...P(A|Cn ) + θ = 1 [15]. Mohandes et al. achieved
a 97.1% accuracy when combining the data from two LMCs at the
classifier level using DS.

Linear Discriminant Analysis (LDA). To ensure maximum class
discrimination, the LDA algorithm decreases data dimensionality
by using linear combinations of factors obtained from a projection
matrix [15]. Mohandes et al. achieved a 97.7% accuracy when com-
bining the data from two LMCs before classification, and classifying
using LDA.

Other variables
As seen in the previous section and tables 1 and 2 a wide variety of
accuracies can be achieved by a single classification method. This
may be due to the parameters of the classification methods, or due
to the other variables in the experiment, such as feature extraction,
the gestures classified, or the amount of training data. This section
will look at some of those variables and speculate on the causes of
the varying accuracies.

Feature selection. Trigueiros et al. analysed four classification
algorithms using Kinect data [20], and they found that the ANN
had the best performance for the task of sign language recognition
due to its high accuracy, and acceptable training time. However this
result does not necessarily translate to Leap data, due to different
methods of preprocessing.

Marin et al. had interesting results when comparing three differ-
ent feature selection algorithms: F-score (measure of how discrimi-
native a factor is); Sequential (the feature whose addition achieves

the greatest improvement in accuracy is added to the set, until the
required number of features is reached); and Random forests. The
best results were generally found with the sequential algorithm
and the SVM classifier (reaching 95.8% with only 16 features). This
result can be compared to Marin’s earlier paper [12] which finds a
somewhat lower accuracy of 91.28% (joint Leap and Kinect data)
using 6 features.

Simos’s feature sets control for hand size (boneTranslation) and
hand location (palmTranslation) and both of these get very good
results (about 99% accuracy). However, previous papers [12, 13] also
adjust for these variables and do not get accuracies as high as Simos
et al, even when keeping the classifier constant. This suggests that
another variable is responsible for Simos’s success, possibly the
GSL gestures.

Set up. Quesada et al. explicitly compared two set ups of LMC
experimentation [17]. One was the user-sensor set up, where the
LMC lies flat on a surface, and the user tilts their gestures down
towards the camera. The other was the user-user set up, which
positioned the LMC underneath the gestures, but the gestures were
facing the horizon (palm parallel to camera). The user-sensor set
up did perform better, but surprisingly, the user-user set up also
recognised a fair number of gestures, despite the problems with
occlusion. Marin et al. [12, 13] tilted the hand forward towards the
LMC, and Mapari et al. [11] tilted the LMC towards the palm. It
is assumed other papers have a similar set up to assure minimal
occlusion.

To overcome the problems of separating gestures, Quesada et al.
tested the system by interspersing every gesture with the gesture
for the number 5. This is to ensure the separation of the gestures,
even whenmovement is involved. Simos et al. mentioned prolonged
pauses to indicate a new gestures, and movement to indicate the
beginning of a new (static) gesture.

Gesture selection. The gestures analysed in the literature tend to
be quite different from one another. ASL was the most frequently
studied language, but even within that, the chosen gestures varied
significantly. Most notably, Marin et al. chose only ten gestures
(mostly) from the fingerspelling alphabet and the numerals, in no
particular order. This means that the gestures chosen may be even
less representative than just the fingerspelling alphabet. Indeed, the
most confused gestures such as those for M, N, and T [5] were all
missing from this data set.

Applications
Seymour et al. [18] implemented an Android sign language recog-
nition using glove based input, and achieved an accuracy of 99%.
The design of this application is loosely divided into data acqui-
sition, gesture classification, and the GUI. They used a bluetooth
connected glove, which is better than a wire connection, but still
loses the mobility of this application somewhat, as carrying around
a glove is cumbersome.

A generic system for sign language recognition was developed
by Trigueiros et al. [21]. Trigueiros identified the necessity of using
separate classification schemes for static and dynamic gestures
and proposed three modules: a pre-processing module, a static
gesture module, and a dynamic gesture module. The pre-processing
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Table 1: A summary of various papers using LMC for SLR

Authors Gestures Data set (M
people x N
repetitions
per letter per
person)

Testing Features Classification Accuracy

Chuan et al.
[5]

26 ASL
fingerspelling
gestures

2 people x 2
sets

four-fold cross
validation (3
sets training, 1
tested)

pinch strength, grab
strength, average
distance, average
spread, average
tri-spread, extended
distance, dip-tip
projection, OrderX,
and angle

kNN 72.78%

SVM 79.83%

Elons et al. [8] 50 ArSL
gestures

4 people x 1 set four-fold cross
validation (2
training sets, 2
tested)

finger positions dis-
tances MLP 88%

finger position 82%

Funasaka et al.
[9]

24 ASL fin-
gerspelling
gestures (no
movement)

unclear unclear palm normal vector,
fingertips position,
arm direction and fin-
gertip direction

Decision tree
(created with
GA)

82.71%

Marin et al.
[12]

10 ASL ges-
tures (could
be chosen for
maximum sep-
arability)

14 people x 10
sets

training set of
M users

position of the finger-
tips, palm center, hand
orientation, fingertips
angle, fingertips dis-
tance, and fingertips
elevation.

SVM 80.86% (Leap
only)

Marin et al.
[13]

10 ASL
gestures

14 people x 10
sets

leave-one-
person-out (14
completely
independent
tests)

F-Score SVM 94.5% (128 fea-
tures); 60.1%
(16 features)

Random
Forests

92.6% (128 fea-
tures); 57.5%
(16 features)

Sequential SVM 96.5% (435 fea-
tures); 95.9%
(128 features);
95.8% (16 fea-
tures)

Random
Forests

94.7% (435 fea-
tures); 94.1%
(128 features);
90.7% (16 fea-
tures)

Random
forests

SVM 95.8% (128 fea-
tures); 93.7%
(16 features)

Random
Forests

94.2% (128 fea-
tures); 90.8%
(16 features)
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Table 2: A summary of various papers using LMC for SLR: cont.

Authors Gestures Data set (M
people x N
repetitions
per letter per
person)

Testing Features Classification Accuracy

Mohandes et al.
[15]

28 ArSL
fingerspelling
gestures

10 samples per
letter per LMC
(M, N
unknown)

"leave one out"
cross
validation. 75%
train, 25% test

finger length, finger
width, average
fingertip position,
hand sphere radius,
palm position, hand
pitch, roll and yaw

DS (merge at
classifier level)

97.1%

LDA (merge at
feature level)

97.7%

Mohandes et al.
[14]

28 ArSL
fingerspelling
gestures

10 samples per
letter (M, N
unknown)

five- fold cross
validation

finger length, finger
width, average
fingertip position,
hand sphere radius,
palm position, hand
pitch, roll and yaw

Naive Bayes 98.3%

MLP 99.1%

Simos et al.
[19]

24 GSL
fingerspelling
gestures

6 people x 10
sets

6-fold leave
one person out
cross
validation

boneTranslation SVM 99.028%

palmTranslation 98.96%

Mapari et al. 32 ASL fin-
gerspelling
and number
gestures (J,
Z, 2 and 6 ex-
cluded)

146 people x 1
set

cross valida-
tion (90% train-
ing, 10% test)

finger position, palm
position, distance be-
tween positions, angle
between positions

MLP 90%

module will have limited usability for Leap data, as a lot of that is
performed by the Leap software. However, this is where some of the
shortcomings of Leap software can be rectified, using some of the
suggestions from Potter et al. [16], for example, inferring that two
fingertips touched when the fingers disappear after coming closer
together. The separation of classification of static and dynamic
gestures allows an application to make use of the best algorithms
for each case, as found by Cheng et al.

4 DISCUSSION AND RECOMMENDATIONS
While sure to be more effective, getting a large population to train
a system does not seem practical, so more consideration is given to
the classifiers and features which work best with smaller data sets.
Out of these, the MLP classifier Mohandes et al. [14] used returned
the best accuracy of about 99%. However, the ArSL gestures used
were all static, and MLP has been shown to recognise static gestures

better than dynamic gestures [4]. If an application is to be extended
beyond fingerspelling, it needs to be well suited to dynamic gestures
as well. The SVM and the kNN are well suited to both of these tasks
[4]. The SVM method is more versatile and seems to provide better
results for this problem. It is recommended to use the SVM for
classification, and the sequential algorithm for feature selection
explored by Marin et al. For the set up of the system, further testing
of combinations of devices is recommended. However, for the set
up of the LMC, it is recommended to tilt the device up towards
the user’s palm rather than tilting the hand, to avoid uncontrolled
interactions with features such as hand pitch, roll, and yaw.

5 CONCLUSIONS
In this paper, a comparison of sign language recognition methods
using the Leap Motion Controller has been provided. The classifi-
cation methods looked at included the kNN, SVM, NBC, DS, LDA,
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MLP, and Random Forests algorithms The two most promising
classification methods were the MLP neural network and the SVM
method. The SVM method is considered more appropriate for sign
language applications due to its ability to handle both static and dy-
namic gestures [4]. A sequential selection algorithm was successful
[13] in identifying the best features to use for classification, and
other papers have mostly used finger and hand positions, distances,
and angles. The most promising combination of variables, across
different sign languages seems to be the SVM with the sequential
feature selection proposed by Marin et al.
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