

Computer Science Honours

Final Paper

2016

Title: Investigating Machine Learning Classifiers for Sign Language

 Recognition using the Microsoft Kinect

Author: Shaheel Kooverjee

Project Abbreviation: HANDGR

Supervisor(s): Assoc. Prof. James Gain

 Assoc. Prof. Deshendran Moodley

Category Min Max Chosen
Requirement Analysis and Design 0 20 0

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 20

System Development and Implementation 0 15 5

Results, Findings and Conclusion 10 20 20

Aim Formulation and Background Work 10 15 15

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80 80

DEPARTMENT OF COMPUTER SCIENCE

Investigating Machine Learning Classifiers for Sign Language
Recognition using the Microsoft Kinect

Final CSC4000W Project Paper∗

Shaheel Kooverjee
University of Cape Town
skooverjee@gmail.com

ABSTRACT
Various motion sensing devices have been used to investigate ges-
ture recognition for sign language. This research investigates the
use of certain machine learning methods and their effectiveness in
recognition of South African Sign Language alphabet gestures. This
is based on data obtained from the Microsoft Kinect V2, a motion
sensor primarily intended for gaming, that allows for interaction
through gestures or spoken commands. A direct pixel-value method
of feature extraction was investigated, along with processing and
classification using the OpenCV library. It was found, in terms
of machine learning classifiers, that the Support Vector Machine
(SVM) was the most accurate classifier, with 75.96% accuracy, when
used with a Polynomial kernel of degree 3. The SVM with a Lin-
ear kernel, as well as a k-Nearest Neighbour algorithm, performed
nearly as well. The Multi-Layer Perceptron performed poorly in
comparison, with accuracy of less than 50%. In terms of efficiency
of the classifiers, prediction times were noted to be quick enough
for use in an ideal real-world classification scenario.

KEYWORDS
Classification, hand detection, gesture recognition, Kinect, machine
learning, sign language, OpenCV, image processing

1 INTRODUCTION
Gesture recognition deals with the mathematical interpretation of
human gestures by a computing device. Typically, gestures originate
from the face or hands, and allow for interaction with devices
without touching them. This area of research commonly involves
machine learning, which allows computers to learn patterns from
data and use the learned information to make predictions on new
data. Machine learning makes our lives easier in today’s data-rich
world, and it has been applied in Virtual Assistants and even self-
driving cars [2].

One linked area of research is the use of cameras and motion
sensors to read and correctly interpret sign language gestures [10].
Various techniques have been applied, primarily based on machine
learning, in order to train a system to recognize and classify such
gestures correctly. Three of the more frequently used devices for
which these algorithms have been implemented are the Myo arm-
band (a gesture recognition device worn on the forearem), the Leap
Motion controller (a hand-tracking device used in virtual reality)
and the Microsoft Kinect sensor (the focus of this report).

Sign languages typically makes use of different parts and posi-
tions of the body, such as the face, arms, hands and body posture.
The South African Sign Language (SASL) alphabet, however, is
recognised and gestured by only the use of the hand in various posi-
tions, as depicted in Figure 1. 24 of the gestures are static, meaning
∗All accompanying programs developed, datasets gathered and full result logs are
available at http://pubs.cs.uct.ac.za under project HANGR.

Figure 1: Gestures of the SASL alphabet

that no hand movement is needed to generate them, while 2 of the
gestures (j and z) are dynamic, requiring the hand to be moved
during gesture performance.

The overall project is based on evaluating selected algorithms
(which have been reported to work efficiently and accurately in
previous sign language gesture recognition research) for each of
the three motion-sensing devices, in terms of gesture recognition.
Investigating this in terms of the SASL alphabet is intended as a
small step towards development of a system to assist in breaking
down the communication barrier between the Deaf and the hear-
ing. This paper focuses on the use of the Microsoft Kinect V2, in
particular, together with the Open Source Computer Vision Library
(OpenCV) for C++.

This study thus aims to find, for the Microsoft Kinect (V2), which
machine learning classifier is best suited to gesture recognition in
the context of the SASL alphabet. Here we define ‘best’ mostly in
terms of accuracy of the classifier i.e. the percentage of gestures
correctly categorised by the classifier, as well as the times taken for
training and prediction by the classifiers.

2 MICROSOFT KINECT BACKGROUND
The Kinect, pictured in Figure 2, is a motion sensing device mainly
used in conjunction with Microsoft Xbox consoles. However, it
is also compatible with Microsoft Windows computers, and this,
along with the available online software development kit (SDK), has
made research possible in other non-gaming contexts that require
sensors for gestures and/or spoken commands.

A special feature of the Kinect is its depth sensor, which is par-
ticularly useful when it comes to gesture recognition and distin-
guishing the human body from a busy background. The Kinect
effectively provides a relatively cheap and easily available depth
sensor [13, 17, 21] that projects an infrared light pattern to provide
a depth map (an image which visualizes distances of scene objects
from a viewpoint) as output [21]. Additional advantages include the

UCT, 2017, South Africa S. Kooverjee

Figure 2: Microsoft Kinect V2

Kinect not requiring background image calibration, or special mark-
ers or gloves for tracking [5], and the fact that the depth sensors
are not affected by environmental conditions, such as low lighting
[1, 5]. These features make it highly suitable for this project.

However, due to the low resolution of the depth sensing camera
(only 512x424 for Kinect V2, which is lower than the 640x480 reso-
lution of the Kinect V1), it can be a challenge to find and separate
specific objects in the image [13]. In our case, the hands of the per-
son using the device are most important, and a hand will occupy a
relatively small portion of the already low-quality image extracted
from the Kinect’s depth sensor.

3 RELATEDWORK
In the Kinect context, various methods of both feature extrac-
tion (the process of selecting informative values from the initially
measured data, to facilitate learning) and classification (learning
whereby training data has known category membership and the
problem lies in identifying category membership of new data) have
been experimented with and tested. Commonly used machine learn-
ing techniques for this kind of classification include neural networks
[12], hidden Markov models [5, 10], and more recently, support vec-
tor machines [1, 17]. Recorded accuracies of the classifiers (where
accuracy refers to the percentage of gestures correctly categorised
by a particiular classifier), according to the related literature, range
between 70% and 100%. However, it is important to bear in mind
that the vast majority of research in this field focuses on methods
which use the Kinect V1.

Table 1 provides a summary of the explored related work, in
terms of classifiers used and their results. These are explained
further in the subsections below.

3.1 Artificial Neural Networks
An artificial neural network (ANN) generally consists of layers
of nodes, which are connected by links of various weightings. In-
formation is accepted at the input nodes of the network and gets
processed together with the links/weightings (the ‘strength’ of the
input nodes in calculating the output to the next layer of nodes) and
inner nodes of the network. It then reaches the final layer, where a
classification result is outputted.

Pizzolato et al. [12] explores the use of an artificial neural net-
work in the context of static gesture recognition for Brazilian Sign
Language. In particular, a multi-layer perceptron (MLP), an ANN
that is an evolution of the standard perceptron (a type of binary
classifier which predicts according to a linear predictor function), is
involved, and helps to distinguish between non-linearly separable
data.

The process for segmentation entails using middleware, NITE
(specifically for the Kinect V1), developed by PrimeSense, in order
to find the user’s center of mass. Using this, along with a depth
threshold, a ‘Virtual Wall’ is obtained, and blobs in front of this are
obtained through a linear time-component analysis. The relevant

blobs are then sorted in terms of area and classified as hands (left,
right, or dominant if only one hand is present). The region of interest
(ROI) is then defined as the minimum rectangle enclosing the blobs.
Pizzolato et al. further implement a heuristic method to adjust the
ROI, in order to attempt to reduce, if not completely eliminate, the
visible arm from the blob.

In particular, the final ROI size chosen was 25x25, which meant
an MLP containing 625 different inputs (one node for each pixel of
the ROI) was used. The MLP also contained 100 hidden/middle layer
nodes, and 5 output nodes, for the 5 differing outputs/gestures.

The network was tested on 5000 samples, containing two groups
of five different letters. The use of the heuristic hand cropping
increased accuracy from between 60% and 75% up to 100%.

Although this study produced very promising results, it is not
without flaws. Firstly, the hand cropping algorithm only accounts
for the hand pointing upwards, and thus limits the types of gestures
to which it can be applied. Secondly, only two gesture sets were
tested, and each contained five very distinct hand positions. This
makes it easier to obtain higher accuracy rates. Another question-
able aspect of the paper is that there is no mention of how many
users recorded data in the dataset; Thus, there is no indication of
how robust the recognition systemwould be when used by different
people (a real-world condition).

Another study [16] regarding recognition of Indian Sign Lan-
guage numerals (0-9) used an ANN, together with a direct pixel-
value method, as done in the Brazilian Sign Language study [12],
and produced an accuracy rate of 97%.

3.2 Support Vector Machines
A support vector machine (SVM) is a supervised machine learning
technique that is mostly used for classification problems. Each
data item is plotted as a point in an n-dimensional space, and a
hyperplane (a subspace of the space in n-1 dimensions) is found
to differentiate the data. A clear division in the training instances
allows the new data to then be classified. Basic SVMs are usually
binary classifiers, however, they can be extended to support multi-
class classification.

A relatively recent experiment [17] uses a combination of ‘Or-
dinary’ features (histogram of oriented gradients, appearance and
motion information), together with special ‘Kinect’ features (body
pose, hand shape and hand motion features). A histogram of ori-
ented gradients (HOG), for part of the ‘Ordinary’ features, is ex-
tracted according to a specific algorithm [3]. Very briefly, after
dividing the image into small pixel regions, each pixel’s gradient
orientation is approximated (with respect to surrounding pixels)
according to one of nine orientation bins. 1D histograms of gradi-
ents in that image portion are then accumulated, in order to record
local shape properties. In terms of hand information, a 48x48 pixel
region around the hand point is cropped, after which HOG features
are extracted on each patch of the region. The remaining feature
extraction focuses on aspects such as body pose and is not relevant
in our context.

For classification in this case [17], a multi-class latent SVM was
used, in order to classify videos of sign language gestures describing
words/sentences. Desired state values of each word/sentence are
treated as the latent variables (inferred from variables that are
directly measured) in the model.

This method was implemented with two different datasets (one
with words and one with sentences) and a total of 1971 phrase
videos and 1890 sentence videos were collected. Test results were

Investigating Machine Learning Classifiers for Sign Language Recognition using the Microsoft Kinect UCT, 2017, South Africa

Table 1: Comparison of highlighted previous research on sign language recognition using Kinect

Reference Classification tech-
nique

Feature extraction Dataset Accuracy

Sun et al. [17], American
Sign Language

Latent Support Vector
Machine

‘Ordinary’ features: HOG
and motion/appearance;
and ‘Kinect’ features: body
pose, hand shape and hand
motion

Part A: 73 unique ASL
signs; 1971 phrases by 9
participants

86.0%

Part B: 63 unique ASL
sentences; 1890 sentences
by 10 participants

82.9%

Agarwal et al. [1], Chi-
nese Sign Language

Multi-class Support
Vector Machine

Depth histograms and
motion characteristics
between frames

10 unique numeral ges-
tures; 2 datasets of 47
video sequences each

81.48% (Linear Kernel);
87.67% (RBF Kernel)

Huang et al. [5], Amer-
ican Sign Language

Support Vector Ma-
chine

Hand, wrist, arm, shoulder
positions and velocities;
Distance separation be-
tween left and right body
parts

10 unique signs; 100 sam-
ples by 2 participants

97%

Pizzolato et al. [12],
Brazilian Sign Lan-
guage

Multi-layer Perceptron
(ANN)

Direct pixel-value, with
and without hand crop-
ping algorithm

Group 1: 5 unique signs;
1250 samples with hand
cropping, 1250 without

100% with hand crop-
ping; 67.4% without
hand cropping

Group 2: 5 unique signs;
1250 samples with hand
cropping, 1250 without

100% with hand crop-
ping; 75.4% without
hand cropping

Trigueiros et al. [19],
Various hand ges-
tures/poses

k-nearest Neighbours Convexity defects, orienta-
tion histogram, etc.

2 different datasets of 10
different gestures each

95.5% on dataset 1;
88.5% on dataset 2

Sharma et al. [16], In-
dian Sign Language

k-nearest Neighbours Direct pixel-value 10 unique numeral ges-
tures, 5000 samples by 100
different participants

78.6%

Hierarchical centroid fea-
tures

70.9%

Zafrulla et al. [21],
American Sign Lan-
guage

4-state Hidden Markov
Models

Body pose and hand fea-
tures

555 seated samples, includ-
ing 207 corrupt samples

95.16% before factor-
ing in corrupt samples;
58.86% after factoring
in corrupt samples

155 standing samples, in-
cluding 9 corrupt samples

94.49% before factor-
ing in corrupt samples;
88.02% after factoring
in corrupt samples

Sarhan et al. [15], Ara-
bic Sign Language

3-state Hidden Markov
Models

Location, orientation, axes,
shape roundness, convex-
ity/concavity, rectangular-
ity and trajectory of hand

16 unique words, 215 sam-
ples signed by 4 different
participants

73.06%

4-state Hidden Markov
Models

78%

5-state Hidden Markov
Models

80.47%

Jangyodsuk et al. [6],
American Sign Lan-
guage

Dynamic Time Warp-
ing

Hand trajectory and hand
shape mapped as HOG
features

2226 samples signed by 2
participants

82.09% at top 10 rank;
92.54% at top 30 rank

Santos et al. [14],
American Sign Lan-
guage

Dynamic Time Warp-
ing combined with
Hidden Markov Mod-
els

Hand contour shapes 12 dynamic hand gestures 97.49%

UCT, 2017, South Africa S. Kooverjee

favorable: For words, the model reported a high accuracy rate of
86%, and the SVM outperformed other algorithms tested.

A very similar studywas undertaken by Agarwal et al. [1], involv-
ing both HOG features and an SVM classifier. Simpler gestures were
used (only those representing the numbers 0-9) and the dataset was
also significantly smaller. The paper also ‘safely concludes’ (more
likely to be an unsafe conclusion as this is casually mentioned with-
out evidence) that the recognition system created is faster than
other techniques in hand tracking or hand shape analysis. With
these issues aside, very positive results were obtained from the
SVM, with accuracy rates of around 80%.

3.3 k-Nearest Neighbours
The k-nearest neighbours (kNN) algorithm is widely used in Com-
puter Vision. It is a lazy algorithm, meaning that it does not do any
generalization once given the data points for training. Rather, these
training data points are ‘remembered’, and classification of queried
data is done according to which class has the most data points in
the nearest k neighbours of the queried data point.

A comparative study of machine learning algorithms [19] uses
kNN for the recognition of hand gestures. After segmenting the
hand, various hand features are extracted, such as convexity defects
and the orientation histogram, amongst others. After testing two
different datasets of 10 gestures each, using different combinations
of features in each dataset, it was found that the kNN compared
favourably when compared to the other tested classifiers, which
included an ANN and an SVM. For the first dataset, the 95.5% accu-
racy rate of the kNN was only beaten by the ANN, by about 1.5%.
The kNN was the best classifier with 88.5% accuracy for the second
dataset. The study, however, fails to mention or show which exact
hand gestures were classified, which makes the validity question-
able (even though results are reportedly good).

An Indian Sign Language study [16], which focused on the 10
isolated numeral gestures (1-10), also used a kNN classifier together
with two different feature extraction methods, namely the hierarchi-
cal centroid and direct pixel-value methods. The direct pixel-value
method is similar to the feature extraction method used by Pizzo-
lato et al. [12], in which the cropped image containing the hand
is directly fed into the classifiers, pixel by pixel. The result of clas-
sification by the kNN was around 78.6% for the direct pixel-value
method, and 70.9% for the hierarchical centroid features. Although
the ANN produced higher accuracy rates, the kNN results are still
worth exploring.

3.4 Other previously explored techniques
Hidden Markov Models: A hidden Markov model (HMM) is

a stochastic model of a system, containing hidden or unobservable
states, and in which future states depend only on the current state.

An investigation [21] of recognition and verification for Ameri-
can Sign Language phrases was conducted using the Kinect. This
deals with both standing and sitting positions, and thus both body
pose and hand features are extracted. Body pose features are ex-
tracted using the OpenNI framework (for Kinect V1). For training
and testing of the system, 4-state HMMs were trained for each
of the 19 signs investigated. Recognition results were very high
without tracking errors, with both seated and standing data giving
around 95% accuracy rates. However, after factoring in the tracking
errors of the data and considering them as failures during testing,
accuracy rates dropped to 88% for the standing data and 59% for the
seated data. The drop in accuracy is attributed to the large amount

Figure 3: Pipeline representation of the use of machine
learning classifiers

of corrupted samples in the dataset. Tracking errors are a result of
OpenNI’s skeletal tracking, and thus the framework is not the most
ideal for use in a gesture recognition system where the user would
be sitting, and especially if the body pose is not important (as in
the SASL alphabet).

A more recent paper [15] explores HMMs for recognition of
Arabic Sign Language. As seen in Table 1, the results vary between
73% and 80%, depending on the number of states used in the model.

Dynamic Time Warping: This is an algorithm for classifica-
tion that is not a machine learning technique, but is still used for
gesture recognition. This algorithm is used to find an optimal align-
ment between two given time series (time-dependent) sequences
under certain restrictions. As detailed further in Table 1, two studies
[6, 14] explore the use of the method for gesture recognition and
achieve relatively high accuracy rates.

4 METHOD OF INVESTIGATION
Figure 3 depicts a typical set of stages in gesture recognition. This
study entailed three major stages, namely:

Data gathering: Obtaining data representing the gestures of the
SASL alphabet;

Feature extraction: Extracting relevant data from the previously
obtained data; and

Classification: Training the classifiers using some data and testing
the newly trained classifiers using other data.
These stages of this study are fully explained below.

4.1 Data Gathering
The data gathering setup catered for recording information pro-
vided by all of the Kinect V2, Myo armband, and Leap Motion
Controller, simultaneously. For this, a program available online1
for the Kinect V2 to easily track hands and fingertips was modified
to allow the additional devices to record their respective data.

The available Kinect V2 hand tracking program was used as it
facilitated the feature extraction process. The program was slightly
altered to account for the tracking of a single hand at a time (as the
SASL alphabet is signed with only one hand). Fingertip tracking
was also removed, because it was found not to be entirely accurate:
Even when the hand appeared clearly outlined, and thus tracked, on

1http://pterneas.com/2016/01/24/kinect-finger-tracking/

Investigating Machine Learning Classifiers for Sign Language Recognition using the Microsoft Kinect UCT, 2017, South Africa

screen, not all 5 fingertips were necessarily picked up and visualised
in their true locations.

Assuming a hand is found by the program, pressing the Enter
key acts as an easy data recording trigger, and the Kinect captures
the contour outlines of the hand, as image frames, for a duration of
3 seconds. As the Kinect has a frame rate of 30 frames per second,
each gesture thus contains approximately 90 frames. On fusing this
program with data gathering components required for the Myo and
Leap devices, some blank frames were recorded. However, each
gesture contained at least a few usable frames, which showed hand
contour outlines.

36 different right-handed participants were recruited for the
data gathering process, and each participant recorded 10 instances
of each gesture letter. The high number of participants, together
with the reasonable number of gestures recorded per letter, was
intended to account for the natural variation between hand shapes
and hand movements among different people. Due to unavoidable
hardware failure during the data gathering process, some letters
were recorded more than necessary and are thus oversampled. In
very few cases, some participants were not able to finish recording
their entire gesture set, and so these sets contain less than 260
gestures. Regardless of this minor issue, the end result is that a
very large gesture dataset has been acquired. With almost 10 000
gestures, the dataset is significantly bigger than datasets in previous
literature, and can possibly be used in future research for gesture
recognition with regard to the Kinect, Leap and Myo devices and
the SASL alphabet.

4.2 Feature Extraction
As mentioned above, the modified program for the Kinect V2 assists
in feature extraction, as it does not record the entire image as seen
by the Kinect, but rather just the contour of the hand. This is
done by first detecting the body of the user, and then tracking the
relevant hand joint, whether right or left. This, together with depth
information given by the Kinect’s depth sensor, allows the contour
outline of the hand to be drawn and recorded in PNG images.

We then process these images in OpenCV2, an open source pro-
gramming library widely used for computer image and video pro-
cessing. The stages of this processing are depicted in Figure 4.

As the majority of the gestures of the SASL alphabet are static,
only 1 frame per gesture is required for training/testing purposes.
Thus, per gesture folder, the first valid frame is chosen, so that it
may be further processed and classified. A frame, in this context, is
considered ‘valid’ if it is non-empty. Furthermore, after finding and
filling the largest contour present in the image (assuming that it is
the contour of the hand), the frame is still considered ‘valid’ if the
smallest rectangle around this contour has dimensions of at least
30x30. Assuming validity, the image frame is then cropped to this
smallest rectangle, and is then rescaled to a 30x30 image through an
algorithm described by Pizzolato et al. [12]. This algorithm entails
resizing the cropped image proportionally to obtain 30 pixels in
at least one dimension, and then centering the result in a 30x30
image.

The final image is then converted to greyscale (using cv::cvtColor
together with cv::BGR2GRAY), resulting in a 900-element (30x30)
cv::Mat frame. This is the feature vector which is fed into classifiers,
and is essentially the previously described direct pixel-valuemethod
of feature extraction [12, 16]. The 30x30 resolution is chosen so as

2http://opencv.org/

to improve on the 25x25 and 20x30 resolutions used in previous
studies, but is not so large as to drastically reduce the efficiency of
the classifiers when trained and tested with these feature vectors.
Due to the image being inputted to a classifier pixel by pixel, an
increase in the size of either (or both) image dimension(s) means
an increase in the number of features that the classifier would be
required to learn, and hence a decrease in the efficiency of the
classifier.

Unfortunately, this study does not account well for the dynamic
gestures (j and z). This is due to the nature of the feature extraction
process, as well as the classifiers explored (being best suited to
static gestures). However, for completeness sake, in terms of the
alphabet, the dynamic gestures are included in the training and
testing.

4.3 Classification
Once all gestures have been cropped and stored in cv::Mat frames,
these are divided into test and train sets. For each classifier, a vari-
able is initialised along with the required classifier parameters.
The classifier can then be trained on the given training set, which
contains the data points along with their respective classes/labels.

Testing of a classifier involves inputting a selected portion of
data into an already trained classifier. A prediction method is then
called on these data points, and predicted classes are then outputted.
To obtain the accuracy of a classifier, the predicted classes are
compared to the expected/actual classes of the tested data, and the
percentage of the data points which have correct predictions is
calculated.

In this case, a k-fold cross-validation method of testing [8] was
used, where the folds are on each participant’s data; Thus k=36.
This entails leaving out one participant’s data (out of the available
36 participant datasets) for testing, while training on the data of the
remaining 35 participants. This process is then repeated k times,
where the testing participant is changed each time. Finally, the k
accuracy results are then averaged to produce a final approximation
of the accuracy of the classifier. This testing method, in which
the test participant is different from the training participants (and
hence, hand shapes of the test participant are completely new to the
trained classifiers), subjects the classifiers to real-world conditions,
making the accuracies more viable in this regard.

The following classifiers, together with their respective parame-
ters, were tested. More specifically, these classifiers were used as
available in the OpenCV machine learning namespace.

k-Nearest Neighbours: This is one of the simplest classifica-
tion algorithms for supervised learning problems [11]. The training
phase of this classifier is minimal, as training data points are merely
‘remembered’ by the classifier. Upon providing a new data point
for classification, the k neighbours (or training data points) that
are closest to the given data point are then found. The class of the
given data point is then determined based on the majority vote of
its neighbours i.e. the class that the most neighbours belong to will
be outputted as the predicted class of the data point.

In this case, using OpenCV’s kNN implementation, the only pa-
rameter which was varied was the k-value, the number of nearest
neighbours to be considered during class prediction. The type of
k-Nearest implementation was set to brute force (a naive neigh-
bour search, computing distances between all pairs of points). The
KDTree implementation (a k-d tree-like structure created during
training to reduce the number of distance calculations) was not

UCT, 2017, South Africa S. Kooverjee

Figure 4: Visual summary of the stages of feature extraction

tested due to the high dimensionality of the feature vector, which
would make training highly inefficient. The kNN was also set to be
a classifier, rather than a regressor.

Support Vector Machine: The support vector machine is com-
monly used in classification problems, and is applied in this case as
a multi-class classifier. This requires the OpenCV SVM type to be
set to C-Support Vector Classification (C-SVC), where the number
of classes is at least 2. A parameter, C, acts as a trade-off between the
training error and decision boundary. This means that the higher
C is, the less the training error will be. However, should C be too
high, the classifier could lose its generalization properties and risk
over-fitting the training data i.e. learning noise of the data.

An SVM kernel specifies the decision functions (or hyperplanes)
of the classifier. Following previous literature, three different types
of SVM kernels, were investigated, in the OpenCV environment
[7], as follows:

Radial Basis Function (RBF) Kernel: This Gaussian function is
defined as e−γ | |xi−x j | |2 , where xi and x j are data points, and γ is
the parameter Gamma, which defines the function’s variance. By
the equation, more variance would occur if Gamma is smaller, while
a larger value for Gamma would result in less variance. Thus, if
two points are far from each other and Gamma is low, the points
are still considered similar; On the other hand, if two points are
close together and Gamma is high, the points are considered similar.
Hence, in terms of the classifier, this parameter dictates how far in
the space a single training data point would have an influence.

Linear Kernel: This is the simplest of the three considered kernels,
with the function simply being xTi x j .

Polynomial Kernel: As the name implies, this function is a poly-
nomial: (γxTi x j +coe f 0)

deдr ee . The Gamma parameter here acts as
a coefficient for the non-constant term, whereas coe f 0 is a constant,
usually kept at the default value of zero. The degree is the most
important parameter of this kernel function.

Multi-Layer Perceptron: Amulti-layer perceptron (MLP) (pre-
viously explained in Section 3.1) can be visualised as shown in the
example in Figure 5 below, which consists of 3 neuron layers - 3
inputs, 2 outputs, and 5 neurons in the hidden (middle) layer.

Figure 5: Example of an MLP

Due to the nature of the feature vector used in this study, the
input layer is set at 900 (30x30) neurons. The output layer is set to
26 neurons, as there are 26 different possible outputs/classes (26
unique letters/gestures in the dataset). This leaves the number of
input layers, along with their sizes, to be determined.

Figure 6: Example neuron with input links and activation
function

Each neuron of the network takes in at least one input from the
previous layer of neurons. These inputs are summed, along with
their respective weightings (individual for each neuron), and a bias
term is added to the sum. An activation function is then applied on
the sum, to obtain the value whichwill be passed to some neurons in
the next layer of the network. This process is visualised for a single
neuron in Figure 6, where x represents some output of the previous
layer,wi a weight value for its respective neuron, ui the sum of the
weighted inputs and bias term, f (u) the activation function applied

Investigating Machine Learning Classifiers for Sign Language Recognition using the Microsoft Kinect UCT, 2017, South Africa

on a given value u, and yi the value passed to the next layer. Thus,
given outputs x j of the layer n, outputs yi of the layer n + 1 can be
calculated as follows [20]:

ui =
∑
j
(wn+1

i, j ∗ x j) +wn+1
i,bias

yi = f (ui)

The weights wn+1
i, j are automatically computed by the training

algorithm. This is done through iterative adjustment of the weights,
to give the allow the network to give the desired responses (classes)
to the training inputs.

The activation function used in this MLP is the sigmoid func-
tion. This is the symmetrical sigmoid function shown below, as in
OpenCV [7], with the parameters set at default to β = 1,α = 1.

f (x) = β ∗ (1 − e−αx)/(1 + e−αx)

Other functions available in OpenCV, but not used, are the Lin-
ear (which would be ineffective given our high-dimension feature
vector) and the Gaussian (which is not completely supported, at
the moment, in OpenCV) functions.

Voting Classifier: The implemented voting classifier acts as a
combination of three of the best above-mentioned classifiers, each
with their own optimal parameters. This voting classifier does a
‘hard’/majority [18] vote, meaning that the most occurring class
between the three classifiers becomes the decided class. Should
the three inputted classifiers all differ in their decision, the most
accurate classifier is then chosen. See Section 5.5 for the chosen
classifiers in this case.

5 RESULTS
All experiments were executed on a machine running a 64-bit Win-
dows 10 Home operating system, with an Intel(R) Core(TM) i7-
6560U processor (2.20GHz) and 8GB RAM.

5.1 Data Gathering and Feature Extraction
Table 2 summarises the results of these stages. From the 36 partici-
pants, 9491 gestures were obtained in total. During the processing
and feature extraction of this data, 7 gestures were considered in-
valid and were thus disregarded, leaving 9484 gestures to be used
in the training and testing of the various classifiers. This process
(for both training and testing data) generally took between 3 and
4 minutes to complete. Assuming a process of around 3.5 minutes
to process 9491 gestures, it would thus take approximately 0.022
seconds to process a single gesture.

Table 2: Results of data gathering and feature extraction
stages

Number of participants 36

Total recorded gestures 9491

Total ‘valid’ gestures 9484

Total ‘invalid’ gestures 7

Time taken to process all gestures ≈ 3.5 mins

Time taken to process a single gesture ≈ 0.022 secs

Accuracy results, obtained after cross-validation on each param-
eter choice, per investigated classifier, are discussed below. Unless
otherwise specified, training times shown in tables refer to the av-
erage time taken, in minutes, to train on the data of 35 participants,
and the prediction times refer to the average time taken to predict
on one participant’s set of data (approximately 260 gestures, which
are not included in the training data) on a trained classifier.

5.2 k-Nearest Neighbours
For this classifier, the k-values tested ranged from 1 to 25 (inclusive).
The results of a pertinent subset of k-values are reported below
in Table 3, along with the standard deviation (Std. Dev.) of the
accuracies.

Table 3: Accuracies of kNN classifiers, along with times
taken for training and prediction (in minutes)

k-value Accuracy Training Time Prediction Time

2 67.01% 0.00018 0.01017

6 69.81% 0.00019 0.01147

10 70.04% 0.00021 0.01133

14 69.63% 0.00021 0.01205

18 69.48% 0.00018 0.01121

22 68.99% 0.00018 0.01014
Std. Dev. 1.11

These values are all within a very small range of each other, with
the biggest difference being for k=2. The highest accuracy rate, as
highlighted in the table, is just over 70%, when k=10. The trend,
within the range of k=[1, 25], is seemingly that accuracy peaks
slowly as k increases towards 10, and drops slowly as k increases
thereafter.

5.3 Support Vector Machine
Under all kernels, C was varied from very small to very large values
(from 0 to 107). Changing this parameter, however, seemingly had
absolutely no effect on the produced accuracies.

Linear Kernel: After cross-validation testing, the classifier pro-
duced an accuracy of 72.62%. On average, it took approximately
0.178 minutes to train this SVM on 35 participants, and 0.0003
minutes to predict on one participant’s dataset.

Polynomial Kernel: The parameter investigated here was the
degree of the polynomial function, which was varied between 2
and 7. Table 4 reports these performances, as well as the standard
deviation of the different accuracies. The coe f 0 parameter was kept
at 0 and the Gamma parameter was kept at its default value of 1.

UCT, 2017, South Africa S. Kooverjee

Table 4: Accuracies of the SVM classifier using a Polynomial
Kernel, along with times taken for training and prediction
(in minutes)

Degree Accuracy Training Time Prediction Time

2 75.22% 0.1704 0.0056

3 75.96% 0.1753 0.0053

4 75.36% 0.1873 0.0054

5 5.95% 0.5341 0.0084

6 3.71% 1.0926 0.009

7 3.94% 1.0882 0.0087
Std. Dev. 38.89

The kernels on degrees 3, 4 and 5 produced highly similar re-
sults, with degree 3 having the highest average accuracy, 75.96%. A
confusion matrix showing results of all classifications through the
cross-validation testing with degree 3, is depicted in Figure 7.

RBF Kernel: The OpenCV library contains a special method to
automatically train an RBF Kernel in order to find the most optimal
parameters. This was used with one randomly selected participant’s
dataset (not cross-validation) for testing.

The result was that this automatic training took 462.24 minutes
to complete and produced an accuracy of 3.85%, classifying all
gestures under one class only, proving the method to be completely
ineffective.

5.4 Multi-Layer Perceptron
The MLP was set to have one middle layer [4] of neurons, tested on
two different sizes. In both cases, the input layer size was set to 900
(number of pixels in an input) and the output layer to 26 neurons
(number of different possible classifications/gestures). The middle
layer neuron counts follow rules-of-thumb set out by Heaton [4].
One rule suggests that the number of neurons in the middle layers
should be between the number of neurons in the input layer and the
number of neurons in the output layer. Based on this, the middle
layer of one MLP was set to 463 (average of neurons in both input
and output layers).

Another rule [4] is that the number of hidden neurons should be
two thirds of the input neurons, plus the number of output neurons.
Hence, the number of middle layer neurons of the other MLP was
set to be 626 ((2/3)*(900 input neurons) + 26 output neurons).

Each MLP produced accuracies of less than 50%, and training
times of above 40 minutes. These results are reported in Table 5.

Table 5: Accuracies of MLP classifiers based onmiddle-layer
neuron count, along with times taken for training and pre-
diction (in minutes)

Neurons Accuracy Training Time Prediction Time

463 44.5% 41.28 0.00128

626 41.06% 58.44 0.00179
Std. Dev. 2.43

5.5 Voting Classifier
The three best performing classifiers, in terms of accuracy alone,
and thereafter in terms of efficiency, were the SVM on a Polynomial
Kernel (degree 3), the SVM on a Linear Kernel, and the kNN (k=10),
respectively. Based on these results, these three classifiers were
chosen to be investigated in combination, using a ‘hard’ voting
system. The preferred classifier, in the case of all three classifiers
producing differing results, was set to be the SVM with Polynomial
Kernel, due to having the highest accuracy rate.

Training of this classifier involves training each of the SVM
(Polynomial), SVM (Linear) and kNN separately, while prediction
involves prediction on each of the classifiers, followed by a naive
method of selecting the most upvoted class.

The training took 0.368 minutes to complete, and prediction
completed in 0.0175 minutes. The final averaged accuracy of the
classifier, after cross-validation, was 76.2%.

6 DISCUSSION
6.1 Efficiency
In considering the time taken to train the classifiers, there is a
stark difference between training times of the MLP and the other
classifiers. While the other classifiers usually took much less than
a minute to train, the smaller sized MLP took over 40 minutes on
average. The larger MLP network took almost one hour. These
durations can be attributed to the fact that the network comprises
a large number of neurons (900 alone in the first layer) and through
training, has its weights automatically adjusted each time a new
data point is included. Due to these excessive times, only two setups
for the neural network were tested, both with only one hidden
layer of neurons. Nevertheless, the classifier can still be regarded as
highly inefficient in terms of training when compared to the other
classifiers. The two results also clearly show an increase in training
time, and a very small increase in prediction time, with an increase
in the size of the middle layer. In addition, the classifier generally
performed poorly, producing accuracy rates of less than 50%.

Keeping in mind that prediction times recorded account for
times taken to predict a single participant’s set of gestures i.e. ≈260
data points, all predictions (for all classifiers) can be considered
rapid in a real-world sense. Furthermore, the times differed by
milliseconds, which would go unnoticed in a real-world system
should a prediction tool be made using one of these classifiers.
The kNN took the longest on average to predict a single set of
gestures (most likely due to the brute-force method of calculating
and comparing distances for each prediction), at roughly 0.6798
seconds when k=10. Given 260 gestures in a single set, a naive
estimate would imply that each gesture takes 0.0026 seconds to
be classified. Combining this result with the approximate 0.022
seconds to process a given gesture image (Section 5.1), classifying
a gesture end-to-end, on a trained classifier, would take around
0.0246 seconds. With this including the longest prediction time
among the classifiers, real-world suitability of these classifiers, in
terms of efficiency, is clear.

6.2 Accuracy and Error
In increasing order of accuracy, the classifiers were the MLP, the
kNN (with k=10), the SVM on a Linear Kernel, and the SVM on
a Polynomial Kernel (with degree = 3). This result led to the in-
vestigation of a combined voting classifier, although this barely
improved on the accuracy of the Polynomial Kernel SVM, with an

Investigating Machine Learning Classifiers for Sign Language Recognition using the Microsoft Kinect UCT, 2017, South Africa

Figure 7: Confusion matrix of total cross-validation testing on SVM with Polynomial Kernel, degree = 3

Table 6: Accuracies of the best performing classifiers

Classifier Accuracy rate

kNN (k=10) 70.04%

SVM (Linear kernel) 72.62%

SVM (Polynomial kernel) 75.96%

Combined voting classifier 76.2%

increase of less than 1%. This also comes with additional time taken
for training and prediction. Considering the small improvement,
the trade-off does not seem worthwhile.

Table 6 summarises the best performing classifiers in terms of
accuracy. In previous studies, the accuracy results were generally
much higher, ranging from low 80s to high 90s for Support Vector
Machines [1, 5, 17]. These studies did, however, use more complex
features for classification. Trigueiros et al. [19] also extracted more
intricate gesture features, but explored kNNs, achieving accuracies
between 88% and 96%. Sharma et al. [16], on the other hand, used
kNNs with direct pixel-value feature extraction, and obtained 78.6%
accuracy on classification of 10 unique gestures. Remembering that
our dataset is based on 26 unique gestures, the SVM (polynomial
kernel) result of 75.96% accuracy is hopeful under this feature ex-
traction method.

Setting the voting classifier aside, the best performing classifier
was the SVM on the Polynomial kernel (with degree 3). The entire
set of results of this cross-validation test can be seen in the confu-
sion matrix shown in Figure 7. The confusion matrix depicts the
exact performance of classification, with each row representing

actual classes, and each column representing predicted classes. The
diagonal of this matrix therefore indicates the numbers of gestures
correctly identified by the classifier (and hence, accuracy is calcu-
lated by summing the values along the diagonal and finding this as
a percentage of the total number of gestures).

Accuracy rates for the investigated classifiers, clearly, were not
perfect. Remembering that the data classified is directly based on
the visual capture by the Kinect, it is not difficult to surmise how
errors can occur in this gesture recognition problem.

As greyscale images (the results of feature extraction) are fed
into the classifiers, pixel by pixel, it is easy for the classifiers to
learn some noisy pixels, and this can result in overfitted models
after the classifiers are trained. Also important to keep in mind is
that a contour of the hand alone (with no inner nuances, such as
finger positions within the contour) is recorded. A few of the SASL
alphabet gestures are very similar in terms of the outer contour
of the hand, and this ambiguity is evident in the confusion matrix.
Much confusion in this regard arises with the group of fist-like
gestures, namely a, e, m, n, o and s (Figure 8).

Figure 8: Random samples, from the acquired dataset, of the
fist-like gestures: a, e, m, n, o, s respectively

UCT, 2017, South Africa S. Kooverjee

Similarly, there is another group of gestures, which have the
index finger raised out of a fist-like hand in certain, slightly differing
ways, and these result in more error: d, t, x and z (Figure 9). Out
of this group, the dynamic gesture z has a starting position that is
basically identical to the static gesture of d, and so misclassification
between these two gestures is expected.

Figure 9: Random samples, from the acquired dataset, of the
raised-index gestures: d, t, x, z respectively

Similarly, the dynamic gesture j is identical in terms of finger
positions, though with a slight tilt of the hand, to the static gesture
i (Figure 10). Unsurprisingly, this causes misclassification between
these two classes: Over 40% of the total number of gestures in each
class is classified in the other. The last major group of gestures
which are most likely to result in error are gestures k and v, which
have both the index and middle finger extended, but the thumb in
differing positions (Figure 11). In this case particularly, the thumb
may not be visible in different positions on visual inspection of the
contour alone, based on a person’s hand and their ability to extend
the thumb between the index and middle finger.

Figure 10: Random samples,
from the acquired dataset,
of the gestures i, j respec-
tively

Figure 11: Random samples,
from the acquired dataset,
of the gestures k, v respec-
tively

Beyond these clearly explainable errors, a few random errors do
occur throughout the confusion matrix. This can be attributed to
multiple factors. First, a test participant’s hand may be shaped quite
differently to those of the participants in the training set, resulting
in more misclassification than usual. A bigger dataset, with more
participants of varying hand shapes and sizes, would help in this
regard.

Second, and more likely, is that during recording, gestures con-
tained some form of error themselves, and the hand and its contour
were not captured in its entirety. The program used for data gather-
ing with the Kinect V2 sometimes fails when picking up the hand,
and does not always accurately track the extension of digits. An-
other shortcoming is that the contour can become noisy, and be
slightly extended and fused with other objects in the near back-
ground of the hand, during tracking. Contours of hands with defects
in certain positions can easily lead to misclassification, based on
how closely related some gesture are, as discussed above. These
flaws in the hand tracking program are also discussed and pointed

out in a finger and hand gesture recognition study based on the
Kinect V2 [9].

The program also occasionally picks up part of the arm, below
the wrist, depending on the positioning of the hand and arm. In
this case, a hand cropping algorithm similar to that explored by
Pizzolato et al. [12] would be beneficial to reduce the visible arm
from the contour extracted.

7 CONCLUSIONS AND FUTUREWORK
Overall, the SVM running on a Polynomial kernel can be considered
the best classifier to solve the gesture recognition problem of the
SASL alphabet, through the use of the Microsoft Kinect V2, along
with the direct pixel-value method of data extraction. After this,
the SVM with Linear kernel and kNN algorithms are not far behind
in terms of accuracy. The OpenCV library effectively facilitates the
use of these algorithms.

The MLP does not seem well-suited to this problem, perhaps due
to the method of feature extraction, which causes training to take
significantly longer than any other classifier investigated. A combi-
nation classifier may be worth investigating using other classifiers,
and also using pre-calculated probabilities of class memberships,
based on training prior to testing, together with a ‘soft’ voting
system, which takes into account these probabilities before new
predictions.

To help solve the issue of highly similar gestures of the alphabet
being confused, other feature extraction methods, which at least
pay more attention to the relative positions of fingers, would be
worth investigating to combine with the direct pixel method, or to
use as a standalone. Finding more intricate features to aid a more
informative feature extraction, however, could potentially be more
computationally expensive, and slow down data processing. Tying
into this is the software used for recording data, which definitely
has room for improvement, as previously noted [9].

Lastly, to account dynamic gestures, classifiers that are better
suited to dynamic gestures could be investigated further. As found
in the literature, certain classifiers are more suited to static gestures,
while some classifiers, such as the HMM, deal well with dynamic
gestures. In such a case, however, a different library which utilises
the HMM classifier, would have to be found, since OpenCV does
not support this as of yet.

8 ACKNOWLEDGEMENTS
The author would like to thank Associate Professors James Gain and
Deshendran Moodley for their guidance and supervision through-
out the course of the project, as well as Anna Borysova and Erin
Versfeld for their contributions, particularly to the data gathering
stage, and support as members of the project HANDGR.

The author also gratefully acknowledges the partial support for
this research, as provided by the National Research Foundation,
Trevor Winer Scholarship Trustees and Investec.

REFERENCES
[1] Anant Agarwal and Manish K Thakur. 2013. Sign Language Recognition using

Microsoft Kinect. In Sixth International Conference on Contemporary Computing
(IC3). IEEE, Noida, India, 181–185.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, and others. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[3] Navneet Dalal and Bill Triggs. 2005. Histograms of Oriented Gradients for
Human Detection. In International Conference on Computer Vision & Pattern
Recognition. IEEE, San Diego, United States, 886–893.

Investigating Machine Learning Classifiers for Sign Language Recognition using the Microsoft Kinect UCT, 2017, South Africa

[4] J. Heaton. 2008. Introduction to Neural Networks with Java. Heaton Research.
https://books.google.co.za/books?id=Swlcw7M4uD8C

[5] Frank Huang and Sandy Huang. 2011. Interpreting American Sign Language
with Kinect. Stanford University term paper for CS 299 (2011).

[6] Pat Jangyodsuk, Christopher Conly, and Vassilis Athitsos. 2014. Sign Language
Recognition using Dynamic Time Warping and Hand Shape Distance Based on
Histogram of Oriented Gradient Features. In Proceedings of the 7th International
Conference on Pervasive Technologies Related to Assistive Environments. ACM,
Island of Rhodes, Greece, Article No. 50.

[7] Adrian Kaehler and Gary Bradski. 2016. Learning OpenCV 3: Computer Vision in
C++ with the OpenCV Library (1st ed.). O’Reilly Media, Inc.

[8] Ron Kohavi and others. 1995. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Ijcai, Vol. 14. Stanford, CA, 1137–
1145.

[9] Anna Lekova, D Ryan, and Reggie Davidrajuh. 2016. Fingers and Gesture Recog-
nition with Kinect V2 Sensor. International Conference Automatics and Informatics
2016 (10 2016).

[10] Becky Sue Parton. 2006. Sign Language Recognition and Translation: A Multi-
disciplined Approach From the Field of Artificial Intelligence. Journal of Deaf
Studies and Deaf Education (2006), Vol. 11, No. 1, pp. 94–101.

[11] Leif E Peterson. 2009. K-nearest neighbor. Scholarpedia 4, 2 (2009), 1883.
[12] Ednaldo Brigante Pizzolato, Mauro dos Santos Anjo, and Sebastian Feuerstack.

2012. A Real-Time System to Recognize Static Gestures of Brazilian Sign Lan-
guage (Libras) alphabet using Kinect. In IHC 1́2 Proceedings of the 11th Brazilian
Symposium on Human Factors in Computing Systems. SBC, CuiabÃą, MT, Brazil,
259–268.

[13] Zhou Ren, Jingjing Meng, Junsong Yuan, and Zhengyou Zhang. 2011. Robust
hand gesture recognition with kinect sensor. In 19th ACM international conference
on Multimedia. ACM, Scottsdale, Arizona, USA, 759–760.

[14] Diego G. Santos, Bruno J. T. Fernandes, and Byron L. D. Bezerra. 2015. HAGR-D:
A Novel Approach for Gesture Recognition with Depth Maps. Sensors 15(11)
(2015), 28646–28664.

[15] Noha A. Sarhan, Yasser El-Sonbaty, and Sherine M. Youssef. 2015. HMM-based
Arabic Sign Language Recognition using Kinect. In Tenth International Conference
on Digital Information Management (ICDIM). IEEE, Jeju, 169 – 174.

[16] M Sharma, R Pal, and Ashok Sahoo. 2014. Indian sign language recognition using
neural networks and kNN classifiers. 9 (jan 2014), 1255–1259.

[17] Chao Sun, Tianzhu Zhang, and Changsheng Xu. 2015. Latent Support Vector
MachineModeling for Sign Language Recognitionwith Kinect. ACMTransactions
on Intelligent Systems and Technology (TIST) (2015), Special Section on Visual
Understanding with RGB–D Sensors.

[18] Muchenxuan Tong, Kun-Hong Liu, Chungui Xu, and Wenbin Ju. 2013. An
ensemble of SVM classifiers based on gene pairs. Computers in biology and
medicine 43, 6 (2013), 729–737.

[19] Paulo Trigueiros, Fernando Ribeiro, and LuÃŋs Paulo Reis. 2012. A comparison of
machine learning algorithms applied to hand gesture recognition. In 7th Iberian
Conference on Information Systems and Technologies (CISTI). IEEE, Madrid, Spain.

[20] B Yegnanarayana. 2009. Artificial neural networks. PHI Learning Pvt. Ltd.
[21] Zahoor Zafrulla, Helene Brashear, Thad Starner, Harley Hamilton, and Peter

Presti. 2011. American sign language recognition with the Kinect. In 13th inter-
national conference on multimodal interfaces. ACM, Alicante, Spain, 279–286.

https://books.google.co.za/books?id=Swlcw7M4uD8C

