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ABSTRACT

Gesture recognition has become more feasible due to the emer-
gence of depth based devices, such as the Leap Motion Controller
(LMC). This paper investigates the use of the LMC for sign language
recognition using various machine learning techniques, in a real-
world setup. The 26 static and dynamic alphabet gestures of South
African Sign Language provide an interesting challenge with its
many similar gestures, while being limited enough not to require
facial recognition or body movement. The classification algorithms
explored include: Support Vector Machine (SVM), Artificial Neural
Networks (ANN), k-Nearest Neighbour (kNN), and a soft voting
classifier to combine all three. Hyper-parameter tuning and feature
selection improved classification accuracy, but gave diminishing
returns. Using the Leap frame with the highest confidence, instead
of the first frame improved accuracy further. The classifiers were
evaluated using a leave-one-out approach on 35 participants. The
best performing classifier, at 52% accuracy, is the SVM, the second,
at 50%, is the ANN, and finally the kNN at 49%.
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1 INTRODUCTION

Over the last several years, the scene of the hand gesture recognition
field has changed due to the emergence of several depth based
devices, for example, the Microsoft Kinect and the Leap Motion
Controller (LMC). Depth based gesture recognition devices use
infra-red light to detect the distances between the device’s camera
and the object in from of it to create a depth map. These devices
have been successful in their intended use cases, but sign language
recognition provides more of a challenge due to its complexity.

The LMC has been used to recognise several sign languages,
including Greek Sign Language (GSL) [25], Arabic Sign Language
(ArSL) [11, 19, 20], Chinese Sign Languages [29], American Sign
Language (ASL) [8, 12, 16-18], and South African Sign Language
(SASL) [24]. More information on previous work is given in Section
3. The SASL alphabet has been chosen for this classification task for
its relevance to South Africa, and the machine learning challenge
its several similar looking gestures provide (see Figure 1).

The data will be recorded using the Kinect and the Myo in con-
junction with the LMC, to allow a comparison between the three
devices, as they record different aspects of the gesture. The Kinect is
a depth-based camera similar to the Leap, but positioned differently.
The Myo reads electromyographic data from the forearm when a
gesture is made. This data will be recorded in a real-world scenario
in order to evaluate the devices more accurately for real use.

Figure 1: SASL alphabet gestures

This paper will attempt to answer the following research ques-
tion: Which machine learning techniques and which classifier out
of the kNN, the SVM, the ANN and a Voting classifier result in the
highest accuracy score and precision score, when classifying SASL
alphabet gestures recorded by the LMC in a real-world scenario? The
chosen methods followed in order to answer this question may
be found in Section 4. Section 5 will follow with the results, and
Section 6 will conclude.

2 OVERVIEW
2.1 Leap Motion

The LMC is a depth based hand recognition tool with two main use
cases: standalone gesture recognition, or gesture recognition when
using a virtual reality headset. Two separate modes are provided
for these two use cases. There are two main software versions for
the LMC: V2 and Orion. The V2 version is supported for more
platforms, while Orion focuses on the VR use case.

The Leap software interprets the depth based images from its two
cameras and constructs a model of the hand. Its API provides access
to the features of this model hand and the raw images, but no depth
map data [22]. The features of the hand model include the location
of finger joints, the directions of the fingers, and the confidence
value, which is how accurately the hand model seems to match the
images of the real hand. These predefined features simplify testing,
but LMC’s own recognition software struggles with representing
the hand accurately when some fingers are obscured[22]. It is not
clear whether Orion addresses these issues. Occlusion may be re-
duced either by tilting the device or by facing the gestures towards
the camera. Mohandes et al. [20] used two perpendicular LMC de-
vices, however the performance was not increased drastically when
compared to other approaches.

A broader problem with using the LMC for sign language recog-
nition (SLR) is that it does not recognise facial expressions which is
extremely important for interpretation of sign language [3, 15, 27].
This is not a problem for the current research, as it is focused on



the alphabet, but any extension of this research into broader SASL
must also include a device capable of recognising facial and body
movements, such as the Kinect.

2.2 Machine Learning

The use of machine learning helps overcome several difficulties. For
example, it can help with some shortfalls of the LMC, it can handle
the complex and numerous sign language gestures [9], and it can
handle with the different ways people repeat a particular sign [19].

The variables affecting the results of the final results can be
categorised into the following stages: data gathering set-up, data,
feature selection, classification, and the train-test split. All of these
interact in order to produce the final results (see Figure 2). The
feature selection stage selects a subset of the data features in order
to increase the accuracy of the classifier. The training data is used
to train a classifier to recognise new instances of gestures, and place
them into classes, which in this case are the 26 letters of the SASL
alphabet. The variables for this paper have been chosen by applying
combinations of previously explored variables to a realistic data
set.

Data
gathering

Train test
Training split
data

Test data

v

Feature
selection

Training
classifier

Predictions

Figure 2: Machine learning pipeline

3 RELATED WORK

Comparison between papers is often not straightforward as they
use different sizes of data, different evaluation methods, and most
importantly, different sets of gestures. Those with more data per
participant can be expected to perform better, as there is more
data and less variation. However, papers with more participants
are more likely to have results that are generalisable to the wider
population.

Several papers on alphabet gesture recognition are compared in
Table 1. The research done by Seymour et al. on SASL[24] was not
focused on alphabet gestures and so it is left out of this comparison.
However, the ASL alphabet is similar to the SASL alphabet, so in
the absence of SASL alphabet studies, ASL alphabet results are
considered most relevant.

The gestures analysed in the literature tend to be quite different
from one another. ASL was the most frequently studied language,
but even within that, the chosen gestures varied significantly. Most
notably, Marin et al. chose only ten gestures, corresponding to
the numbers 1-10. This means that the gestures chosen are even
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less representative of sign language than just the fingerspelling
alphabet. Indeed, the gestures most often confused in the rest of
the literature (M, N, and T)[8] were all missing from this data set.

3.1 Data gathering set-up

Quesada et al. explicitly compared two set ups of LMC experimen-
tation [23]. One was the user-sensor set up, where the LMC lies
flat on a surface, and the user tilts their gestures down towards
the camera. The other was the user-user set up, which positioned
the LMC underneath the gestures, but the gestures were facing the
horizon. The user-sensor set up did perform better, but surprisingly,
the user-user set up also recognised a fair number of gestures, de-
spite the problems with occlusion. Marin et al. [17, 18] tilted the
hand forward towards the LMC and achieved a maximum accuracy
of 95.8% (see Table 1), and Mapari et al. [16] tilted the LMC towards
the palm and achieved 90% accuracy.

For data gathering involving both the Kinect and the LMC, Marin
et al. [17] placed the Kinect on a table and the leap directly under
the hand. To prevent occlusion, the gestures were tilted slightly
towards the LMC. They achieved slightly over 80% accuracy.

The gestures are mostly recorded one at a time [17, 18], however,
Quesada et al. and Simos et al. implemented a continuous data
gathering process [23, 25]. Quesada et al. interspersed every gesture
with the gesture for the number 5 to ensure separation of gestures,
while Simos et al. used prolonged pauses to indicate a new gestures,
and movement to indicate the beginning of a new (static) gesture.

The continuous process, while it seems more complicated, may
actually improve results, as the Leap software needs to track the
hand, and so in the continuous process, it has more opportunity to
tailor its internal model of the hand to the input it receives.

3.2 TFeature selection

Marin et al. [18] had interesting results when comparing three
different feature selection algorithms: f-score (measure of how dis-
criminative a factor is) feature selection; sequential feature selec-
tion(the feature whose addition achieves the greatest improvement
in accuracy is added to the set, until the required number of fea-
tures is reached); and Random Forests feature selection. The best
results were generally found with the sequential algorithm and the
SVM classifier (reaching 95.8% with only 16 features). However,
because a linear SVM was used for the sequential algorithm, it may
have bias towards the SVM over the Random Forests classifier. This
result can be compared to Marin’s earlier paper [17] which finds a
somewhat lower accuracy of 91.28% (joint Leap and Kinect data)
using 6 features. This difference may be either due to better selected
features, or simply due to more features available.

Simos’s feature sets control for hand size (boneTranslation) and
hand location (palmTranslation) and both of these get very good
results (about 99% accuracy). However, previous papers [17, 18] also
adjust for these variables and do not get accuracies as high as Simos
et al, even when keeping the classifier constant. This suggests that
another variable is responsible for Simos’s success, possibly the
GSL gestures.

3.3 Classification

Classification involves deciding to which gesture class a new ges-
ture belongs. Classifier suitability is very much dependent on the
problem, for example some of the classifiers explored have a bias
towards either static or dynamic gestures: the ANN performs best
for static gestures while Random Forests performs best for dynamic
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Table 1: A summary of various papers using LMC for SLR

Authors Gestures Data set Testing Features Classifier Accuracy
Chuan et al. 26 ASL letters 2 people x 2 sets fou.r—fo.ld cross p%nch strength, grab strength, average kNN 72.78%
[8] validation (3 distance, average spread, average SVM 79.83%
train : 1 test) tri-spread, extended distance, dip-tip '
projection, OrderX, and angle
Elons et al. 50 ArSL gestures 4 people x 1 set fou.r-fo'ld cross finger positions distances MLP 88%
[11] validation (2 6 .
. nger position 82%
train : 2 test)
Funasaka et 24 static ASL unclear unclear palm normal vector, fingertips position, Decision 82.71%
al. [12] letters arm direction and fingertip direction tree
Marin et al. 10 ASL numbers 14 people x 10 training set of M position of the fingertips, palm center, SVM 80.86% (Leap only)
[17] sets users hand orientation, fingertips angle, finger-
tips distance, and fingertips elevation.
F-Score SVM 94.5% (128 features)
60.1% (16 features)
Marin et al. 10 ASL numbers 14 people x 10 leave-one- Random 92.6% (128 features)
(18] sets person-out Forests 57.5% (16 features)
Sequential SVM 95.9% (128 features)
4 95.8% (16 features)
Random 94.1% (128 features)
Forests 90.7% (16 features)
SVM 95.8% (128 features)
fi
Random forests 93.7% (16 features)
Random 94.2% (128 features)
Forests 90.8% (16 features)
Mohandes et 28 ArSL 10 samples per leave-one-out finger length, finger width, average DS 97.1%
al. [20] fingerspelling letter (M, N cross validation fingertip position, hand sphere radius, LDA 97.7%
gestures unknown) palm position, hand pitch, roll and yaw '
Mohandes et 28 ArSL 10 samples per five-fold cross finger length, finger width, average Naive 98.3%
al. [19] fingerspelling letter (M, N validation fingertip position, hand sphere radius, Bayes
gestures unknown) palm position, hand pitch, roll and yaw MLP 99.1%
Simos et al. 24 GSL 6 people x 10 6-fold leave one boneTranslation SUM 99.028%
[25] fingerspelling sets per‘son'out Cross palmTranslation 98.96%
gestures validation
Mapari etal. 32 ASL finger- 146 people x 1 cross validation finger position, palm position, distance MLP 90%
[16] spelling and set (90% training, between positions, angle between positions

number gestures

10% test)

gestures [7]. The SVM and the kNN perform well for both types of
gestures [7].

Support Vector Machine (SVM). This is the most popular algo-
rithm in the literature for classification of the gestures [7]. The SVM
algorithm finds a hyperplane that separates two classes cleanly, and
with as much margin as possible [1]. The hyperplane is a separating
plane of dimension n — 1 where n is the number of features defining
a data point. This method was used by Chuan, Marin, and Simos,
and they all found accuracies ranging from 79% - 99%.

Neural Networks (ANN). The multi layer processor (MLP) neural
network is a type of neural network. It is the most explored type in
the literature, so this is the only type of ANN that will be discussed.
The MLP takes features as input, processes them in a hidden layer,
and outputs decisions [10]. The MLP usually consists of three layers:
the input layer, with the same number of nodes as the number of
features; the output layer with the same number of nodes as the

number of classes; and the hidden layer. The hidden layer allows
a complex interaction between the input features and the output
classes based on the node connection weights. The weights are
modified during the classifier training. This method was used by
Mohandes, Elons, and Mapari, and accuracies ranging from 82% -
99% were found.

k-Nearest Neighbour (kNN). The kNN algorithm finds the k near-
est neighbours (from the training set) to a given instance, and
classifies it according to the classification of the neighbours [26].
For kNNs ‘nearest neighbour’ means the data point in the training
set that is closest to the given data point, when the distance is
measured between the two feature vectors (sets of features). This
was used by Chuan et al. and Clark et al. who achieved accuracies
of 72.78% and 82.5% respectively.

Random Forests (RF). The RF algorithm uses a set of trees for
prediction, where each tree depends on a vector sampled randomly



from the same distribution [5]. Marin et al. got accuracies from 57%
to 94% using Random Forests, depending on what features were
selected.

Naive Bayes Classifier (NBC). The NBC algorithm uses the Bayesian
formula P(A|C1)P(A|Cy)...P(A|Cy) = 1 to predict the probability of
an event happening, given other events and their probabilities [19].
Mohandes et al. achieved about 98% accuracy using this method.

Dempster-Shafer (DS). The DS algorithm generalises the Bayes
algorithm by adding an uncertainty term, 0 so the equation is as
follows: P(A|C1)...P(A|Cp) + 6 = 1 [20]. Mohandes et al. achieved
a 97.1% accuracy when combining the data from two LMCs at the
classifier level using DS.

Linear Discriminant Analysis (LDA). To ensure maximum class
discrimination, the LDA algorithm decreases data dimensionality
by using linear combinations of factors obtained from a projection
matrix [20]. Mohandes et al. achieved a 97.7% accuracy when com-
bining the data from two LMCs before classification, and classifying
using LDA.

3.4 Evaluation

A typical approach to classifier evaluation is to split the data ran-
domly into a train and a test set, but a couple of papers [17, 18]
choose the ‘leave one out approach’: the test set is one person’s data,
and the rest of the data is the training set. These two approaches
may have different effects on the accuracy. The random data split
allows for the classifiers to be more ‘prepared’ for the test data, as
it has already seen similar gestures in the training set performed
by the same person. However, while the ‘leave one person out’
approach allows for a more accurate representation of how the clas-
sifier may be used in its applications, it does benefit from having
more training data if there are more than 4 participants, as in the
research of Marin et al. [17, 18]

4 METHODS

The python scikit-learn library is used for all machine learning
processes. [21] An overview of the experimental variables and the
machine learning techniques used can be found in Table 2 and
Figure 3, and the motivations follow.

Table 2: Table showing experimental variables

Classifier Classifier
params

Gestures Data set Testing Features

SUM Randomised
leave F-score
one & RFE

person  (extra

26 SASL 35

alphabet  people x Default

params

grid search

estures 10 sets
& out trees) Randomised

MLP

grid search

Default
params

Randomised

kNN

grid search

Default
params

4.1 Data type and source

Gestures. As part of the specification of the project, the SASL
alphabet gestures were chosen (see Figure 1). This includes some
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similar-looking gestures (such as A, E, M, N, O, and S) and two
dynamic gestures (J and z). These features of the data ensure some
sort of relevance of the results to the rest of SASL, and present a
challenge suitable for machine learning. The reference images used
for recording the data are slightly different to Figure 1. The set used
was obtained from June Bothma!, as it was deemed less ambiguous.
Unfortunately the reference used is not publicly available.

Participants. The participants recruited consisted of students
of the University of Cape Town who had no previous experience
with SASL. Some demographics have been recorded, such as hand-
edness, age, gender, and race. The majority of participants were
right-handed white men in their 20s. More detail on the demograph-
ics can be found on the project website.

4.2 Data gathering set-up

Figure 4 shows how the three devices are positioned relative to
each other: the leap is positioned under the hand, the Kinect faces
the participant about half a meter away, and the Myo is worn on
the arm which performs the gestures. The physical set-up is very
similar to the one used by Marin et al. [17], with the gestures tilted
slightly towards the Leap. This tilting does not compromise the
recordings taken by the Kinect, as the Kinect is also set up lower
than the gestures are performed, and so also benefits from the more
direct angle. However, even this tilting is suboptimal for the kinds of
gestures the LMC is designed. The gestures are not tilted down any
more because priority is given to the gesture being correct from
a person’s perspective in order to best simulate how the device
would normally be used.

Each participant performs 10 instances of every gesture, result-
ing in 260 data points for every participant. Each of these data
points consists of a Myo recording, a Kinect recording, and a Leap
recording. For this paper, only the Leap data is considered. The
program runs for only 10 gestures at a time due to complications
with the Myo, so every 10 gestures the Leap is forced to recreate
the hand model. During the 10 gestures, the Leap software is free
to track the hand, however only once the participant is in position
is the data recorded. The order of these gestures is randomised,
for several reasons, the most important of which is that the first
gestures will be more prone to misidentification due to the limited
time allowed for improving the Leap’s internal model of the hand.
If the interpretation is so bad that no hand is detected, then it does
not record. To ensure recognition, the participant must move into
the gesture slowly from an easily recognisable position. Because of
this, there is a chance that the gestures that are moved into slowly
are more accurately represented by the Leap software.

4.3 Data processing

The hand model which the Leap software constructs is stored in
a frame object which corresponds to a particular moment in time.
Frame objects are serialised to text files using the Leap’s own seri-
alisation method. Due to the extremely high frame rate of the LMC,
only every fifth frame is deserialised and processed. This reduces
the effective frame rate from about 100 frames per second to about
20.

ISASL teacher at UCT
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Figure 4: Data gathering set-up

Preprocessing. One performance of a gesture corresponds to one
data point, which is defined as a vector of features extracted from
the hand model.

All relevant features are extracted recursively from the frame
object, with the feature label being built as the hand structure is
traversed. For example, the x-coordinate of the tip position of the
index finger is given by the feature labelled hand_finger_1_
tip_position_x. The finger positions are transformed to be rela-
tive to the palm center and are also included in the potential features.
This processing results in 1504 features per frame. It is important
to note that depending on the method of handling the frames per
gesture, the effective feature number is affected. For example, using
two frames to define a gesture would result in 3008 features.

For processing time reasons, only one frame is used per gesture,
and treated as representative of the entire gesture. Thus, the dy-
namic gestures are reduced to a static image. The selected frame
is the one with the highest confidence value that the Leap motion
software assigns to each hand model. Features which do not vary
between any of the data points are removed, however low variance
features are not removed as all remaining features are reasonably
high variance. At this stage, the data is scaled, because many of the
methods explored are designed for scaled data. Scaled data consists
of feature vectors where the distribution for each individual feature
has zero mean and unit variance. This ensures that features which
change on a larger scale in comparison to other features do not
dominate the learning process of a classifier. 2

Zhttp://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler

Feature selection. The check-list provided by Guyon et al. [13]
was loosely used as a guideline for feature selection. Adhoc fea-
ture selection was used only in the sense that meta features such
as "id" and "timestamp" were not included. Additionally, features
conceptually unrelated to the gestures, such as finger width, were
excluded as much as possible to ensure generalisability. A problem
with the data extracted from the Leap API is that the features do
not directly describe the shape of the hand, but rather just give
disjointed values. For this reason, it seems prudent to combine fea-
tures into ones more suitable for gesture interpretation. This is not
done, due to time constraints.

As recommended by Guyon et al. [13], a variable ranking method
is used first to cull the features to a more reasonable number. The
SelectKBest method from sklearn is used to select the top 500 fea-
tures, sorted by their f-score. The f-score is calculated using the
f-test, which computes the ratio of inter-class variance to intra-class
variance for a particular feature. If a feature has low variance within
a particular class, but a high variance outside it, then it is given a
better score, as it is more discriminative.

The features are then recursively eliminated to 50 of the most
important features, as determined by an Extra Trees Classifier. This
classifier was chosen as it has similar accuracies as the three main
classifiers chosen, when comparing the classifiers with the default
parameters. The SVM, kNN, and ANN were not chosen for this so
as not to unduly bias the features to a particular classifier.

4.4 Classification

Classification involves taking a given data point and labelling it
with a class, using knowledge granted by training data. So in the
case of gesture recognition, a classifier would be given data rep-
resenting a gesture, and it would output which letter that gesture
represents. Four classifiers were experimented with: the SVM, the
kNN, and the MLP, as they are the most successful classifiers in the
literature. Additionally, a voting classifier, which uses the output
of the previous three classifiers to make a decision, was tested to
allow the three classifiers to cover each other’s weaknesses.
These classifiers all have hyper-parameters which can be tuned
in order to make the classifier perform better for a particular prob-
lem. The literature explores only some basic hyper-parameters for
these classifiers, however this research experiments with a wider
range of hyper-parameters. To run the experiments in a reasonable
time limit, a randomised cross validation search across the defined
parameter space is used. This involves taking a subset of the given
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training data, training a classifier with certain parameters, and test-
ing it on a different subset of the training data. This is repeated for
various combinations of parameters until an optimal solution is
found. A randomised search is used over a grid search due to its
comparable accuracy but much greater efficiency [2].

An interesting trap mentioned by Cawley et al. [6] is the trap of
using all the training data for feature selection, and then using a
cross validation parameter search on the same training data, using
the "pre-selected” features. The correct way of doing this is to do
feature selection within every cross validation fold for the model
evaluation. However, this would add a lot of extra computational
time, so this is not done.

A summary of the parameters explored for each of the classifiers
can be found in Table 3, and the motivations for the parameters
follows.

Table 3: Parameters explored using randomised grid search

Classifier =~ Parameter Values explored
kernel linear, rbf, polynomial
C 275 to 21
SVM gamma 2715 to 23
degree 1to5
decision function one vs one, one vs rest
k (n_neighbours) 1to 50
KNN Weigljlts uniform, distance
algorithm auto, ball tree
metric 1to5
hidden layer nodes 26 to 200
activation function  identity, logistic, tanh, relu
ANN alpha 0.00001, 0.001, 0.1, 10, 1000
solver Ibfgs, sgd, adam
learning rate constant, inverse scaling, adaptive
learning rate init 10%to 1

SVM. For the SVM, the literature mostly explores linear and Ra-
dial Basis Function (RBF) kernels, finding that RBF tends to perform
better. However, there are two other options for the kernel, the
polynomial and the sigmoid kernel. The sigmoid kernel is invalid
for many parameter combinations, and so it is not considered. In
general, an SVM forms some sort of decision boundary using the
training samples. This decision boundary determines where a data
point (or gesture, in this case) is classified as a particular class(or
letter). An illustration of the SVM is provided in Figure 5.3

The linear kernel separates the training samples using linear
hyperplanes, while the polynomial kernel uses polynomial hyper-
planes. The RBF kernel (the default choice) uses e llx=x"II* to form
the decision boundaries, where x and x” are two data points, and
v is a scaling factor. Because ||x — x’||? is the Euclidean distance
squared, the RBF can also be considered a similarity function.

The C parameter, used by all three explored kernels, allows the
SVM to ignore some misclassified data in order to have a simpler
decision boundary. # A higher value of C means the model prioritises
not misclassifying samples, while a lower value means the boundary
simplicity and the width of the boundary is prioritised. A higher C
value may result in over-fitting if the data is noisy, however this
effect may be offset by a good feature selection strategy. The range

3http://www.coxdocs.org/doku.php?id=perseus:user:activities:matrixprocessing:
learning:classificationparameteroptimization
4http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
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Figure 5: SVM illustration

explored is 27 to 21° following the advice of Hsu et al. [14] The
default value for C is 1.

The gamma parameter, used by the polynomial and RBF kernels,
affects the area of effect of one data point. A low value means one
data point has a large area of effect, and a high value means the
area of effect is low. This parameter also helps prevent over-fitting,
by ensuring that outliers do not affect the decision boundary too
strongly, but gamma must not be so large as to have only the data
point in its area of effect. Thus gamma can balance out a lower C
value, which uses less memory and results in a model that predicts
faster. The range of values chosen for this parameter is 271> to 23
[14]. The default is auto which determines the best gamma value
automatically, and is also explored in the parameter search.

The degree parameter is the maximum degree of the terms in the
polynomial function of the polynomial kernel. A high value risks
over-fitting, and a low value risks not capturing the complexity of
the data. The default value is 3, and the range explored is 1-5.

Finally, the decision function shape can be either one vs one
(ovo) or one vs rest (ovr). Both are explored. The ovo algorithm
finds an optimal boundary between each pair of classes, while the
ovr algorithm compares one class to the rest. Thus, ovr (default)
results in fewer sub boundaries and thus quicker computation, but
also in an imbalanced dataset. [4]

kNN. The k Nearest Neighbour algorithm classifies a data point
based on the classification of its k nearest neighbours. The distance
between two data points is the distance between the two feature
vectors. The main parameter is the number of neighbours to con-
sider, k (called n_neighbors in scikit-learn). The range explored
for this parameter is 1-50 neighbours. With more data points, and
more variation there is a chance a greater upper bound may be
needed. The default value for this parameter is 5.

The weights parameter determines the relative weighting of
the k neighbours. The weights uniform (default) and distance
are explored. Uniform weighting means all k neighbours are given
equal consideration, no matter how far they are from the point to be
classified. The distance weighting prioritises those points closest to
point to be classified. This parameter allows a greater k to make the
algorithm more stable, without unduly valuing the further points
within the k neighbours.

The algorithmparameter allows auto (default), brute, kd_tree
and ball_tree options. These are the algorithms used to calculate
the distances between data points, and thus, potential neighbours.
The brute algorithm is infeasible for large volumes of data, and the
KD tree algorithm is inefficient for high dimensional data. There is
a chance that with a lower number of dimensions (more aggressive
feature selection) the KD tree algorithm may become viable once
again. For this reason, the auto algorithm is chosen along with
the ball_tree algorithm. The ball tree algorithm partitions all the
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data points into hyperspheres, which allows for quicker calculation
of the nearest neighbours.

The metric parameter which determines the way distance is
calculated between two data points is left as the Minkowski metric,
and is modified using the parameter p. When p is 1 the distance
measurement used corresponds to Manhattan distance, and when
p is 2 (default), the metric used corresponds to Euclidean distance.
Because a lower p is better for high dimensional data the range
explored is 1-5.

The following two equations demonstrate Euclidean and Man-
hattan distance respectively, where x and y are data points (feature
vectors), x; is the jith feature, and n is the total number of features:

euclidean_distance = \/(xo —yo)2+ ...+ (xn—yn)? (1)

manhattan_distance = |xo — yo| + ... + |xn — Ynl (2)

ANN. For the MLP, only one hidden layer is explored, as usually
adding more layers adds more computation without improving
results. The node numbers explored for the hidden layer are from
26 (the number of output nodes) to 200, to allow for the complexity
of the input data. The default for this parameter is one hidden
layer, with 100 nodes. Too few nodes may lead to not capturing
the complexity of the data, whereas too many nodes may lead to
over-fitting.

The activation function determines when a node is activated
and for which values the activation ‘pulse’ must be propagated,
eventually leading to the output layer and outputting the result. The
activation functions explored are the identity, logistic, tanh
and relu (default) functions. The relu function is the identity
function, but 0 for all negative values. The activation function
corresponds to the distribution of the underlying data, but because
the distribution of the data in this case is unknown, all the available
functions are tested.

The parameter alpha is the regularization term to balance over-
fitting. A lower alpha encourages a more complicated decision
boundary, and a higher value encourages a simpler boundary. >
The range explored is from -5 to 3, in logarithmic space.

The solver parameter determines the method used for opti-
mization of the node connection weights. The solvers explored are
1bfgs (quasi-Newton solver), sgd, and adam (default). The SGD
algorithm is an incremental gradient descent solver, which allows
a user specified learning rate, while the Adam solver uses adaptive
learning to get to a solution quicker. The SGD solver requires a
learning rate functions, which are described next.

The learning rate of an ANN can be either constant or decreasing
with time to encourage convergence to a solution. A higher learn-
ing rate means that the solver will reduce the weight of previous
observations more readily when a new, contradicting, observation
is made. A low learning rate means that new information is incor-
porated slower. The functions explored as the learning rate are:
constant (default), inverse scaling (decreasing exponentially), and
adaptive (if training loss does not decrease, divide the learning rate
by 5)°. The learning_rate_init value is the initial value if the
algorithm needs one. The range explored is 107 to 1. [28]

Shttp://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.
html

®http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html

Voting classifier. Finally, the Voting classifier takes into account
the decisions of all three classifiers described, and outputs the most
likely class. This classifier is included to take advantage of the
strengths of all three classifiers, in the hopes of getting a better
overall accuracy. The voting type used is soft, which takes into
account the probability/confidence that a classifier outputs, rather
than just the decision by using weighted average probabilities.”
This strategy allows a weighting of importance to be given to every
classifier, however this is not used because preliminary testing
did not show significant differences between the accuracies of the
three classifiers. Given a particular gesture to classify, the classifiers
return 26 probabilities each, all corresponding to the percentage
probability that the given gesture belongs to a particular class. For
every class, the average of the three probabilities from the three
classifiers is calculated, and the Voting classifier outputs the class
with the highest average probability as the most likely class.

4.5 Evaluation

Cross-validation. The classifiers are tested using a leave-one-out
approach. A single run involves 34 participants as the train set,
and 1 participant as the test set. This is repeated 35 times, with
each run using a different participant as the test set. See Figure 3
for an overview of a single run. While this approach does mean
that the models are trained on a lot of data, this is believed to be
a more real-world evaluation, as the test data is all new. Only the
training data set is used for decisions about data processing, feature
selection, and for parameter tuning. In the data processing and the
feature selection stages, the decisions made using the training set
are used to modify the test data blindly so as to ensure the same
features are used in both training and testing. For example, if the
feature selection process decides features 3 and 6 are irrelevant,
those features are removed in the test set without judging how
effective they are at predicting the test data. Naturally, only the
training set is used to train the models, and the test set is left to
test the models.

Error analysis. Several metrics are recorded in order to facilitate
analysis of the results: the confusion matrix, the precision, recall,
and f1 scores for each class and the average for of each of these
values for each classifier.

The confusion matrix plots the actual classes vs. the predicted
classes. It allows a clear visual analysis of the misclassification of
gestures: It shows which gestures were accurately classified and
which were confused for other gestures. It is a visual representation
of the true positive, true negative, false positive, and false negative
values.

A true positive (Tp) occurs when the the predicted class is the
same as the actual class. A false positive (F) occurs when a classi-
fier classifies a gesture as the incorrect class. A true negative (Ty,)
is when the classifier correctly predicts a gesture as not part of an
incorrect class. A false negative (F;) occurs when the classifier does
not classify a gesture into the correct class.

Precision (P) is the ratio of correctly identified instances of a
class, to the total number of times the algorithm identified a gesture

.. L. T,
as that class. In formula, precision is given by ﬁ. Recall (R)
is the ratio of correctly identified instances of a class to all the
instances where the gesture was truly that class. In formula, recall

"http://scikit-learn.org/stable/modules/ensemble.html#voting- classifier
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L. T
is given by 2.
ptin

The f1 score is the harmonic mean of precision and recall, given
by 2%, However, this value is ignored for analysis because the
classes are well balanced by design and so will not give much more
information than the accuracy. The accuracy is the sum of all true
positives over the total number of predictions. This score is focused
on during the feature selection and the hyper-parameter tuning
stages.

Ideally, the accuracy, recall, and precision are all high. However,
in the interests of interpreting a language, the classifiers giving
the best precision and thus the lowest false positive values are
prioritised.

5 RESULTS

A summary of the final accuracies of the explored classifiers is given
in Table 5. The data set and the full logs for all the experiments run
for this investigation are given on the project website.

5.1 Preprocessing

The features that were had no variance and thus removed were
the *_basis_origin_x features and the direction features of the
metacarpal bone (closest to the palm) of the thumb (hand_finger_o
_bone_0_direction_x). The metacarpal bone of the thumb has no
length in the Leap hand model, and thus, all the hand_finger_o_
bone_0_x features do not provide any information and are irrele-
vant. The positional values of the metacarpal bone of the thumb are
kept because they change with the hand centre, and thus are not
0 variance. However these features do not provide any new infor-
mation and thus do not perform well in the feature selection stage.
The basis specifies the orientation axes of a feature such as a bone,
hand, or arm. The origin is a vector specifying translation factors
on all three axes. Because the basis is independent of the positional
values, its origin vector is always the same. The combination of
removing 0 variance features and scaling the data improved the
accuracy by about 5% in preliminary experimentation.

5.2 Feature selection

The most frequently selected feature by the randomised grid search
is the transformed thumb tip position (relative to the hand centre),
which corresponds with heuristic analysis, considering the number
of gestures distinguished solely by the thumb position. The general
hand descriptors such as pinch strength, grab strength and grab
angle, were not selected as often as the raw finger features, however,
the pinch strength feature does make it into the top 50. Using the
top 50 most commonly chosen features during preliminary testing
worsened performance, because taking the most selected features
does not consider the importance of combinations of features. Some
features have very high correlation, for example: the thumb tip
position and the ‘next joint’ of the thumb distal bone actually refer
to the same feature. An aggregate of features values both these
features equally highly, while in a single run of feature elimination
only one of these would be chosen, as the first one adds all the
value and the second one adds nothing new. A potential method
of combining the best of both approaches is by running recursive
feature elimination on the top 100 features, and using the resultant
features as a constant set for every run. However, because feature
selection is not the time bottleneck of the pipeline, the feature
selection is allowed to run for every test (see Figure 3).
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5.3 Parameter tuning

The parameter tuning phase adds a lot of extra computational time,
so some parameters were made constant based on preliminary ex-
perimentation. The most commonly selected parameter over several
runs of the randomised grid search was chosen, and the resultant
classifier was compared against a classifier with the parameter
selected by randomised grid search in order to validate that the
chosen parameter value is indeed optimal. This is run several times,
and more parameters are made constant incrementally. Using this
strategy, the accuracies of the two classifiers converge because the
values not kept constant have the least effect on the accuracy of
the classifier for this problem. Table 4 shows the parameters kept
constant for each of the classifiers after preliminary testing. Setting
any other parameters constant worsened the performance of the
classifier on average (possibly due to non-comprehensive prelim-
inary testing) and so are left to be tuned by the randomised grid
search as shown in Table 3. In particular, the MLP was resistant
to constant parameters, however this could be because the search
space was greater than for any of the other classifiers.

Table 4: Parameters kept constant after preliminary testing

Classifier ~Constant parameters

SVM kernel="rbf’, decision_function_shape="‘ovo’
kNN weights="distance’, algorithm="ball_tree’
MLP None

5.4 Classifier scores

Overall, the accuracies achieved by the classifiers are very similar
to each other (around 50%). However, the accuracies achieved using
different participants vary greatly, from about 30% to 60%, but
mostly lie around the 50% mark. Figure 6 summarises the accuracies
achieved by the various classifiers over the 35 independent tests.

e
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Figure 6: Box and Whisker plot of the accuracies for the
SVM, kNN, and MLP over 35 independent tests

The mean recall, precision and accuracy values for each of the
classifiers may be found in Table 5. At 52.2% accuracy, the SVM
performs better than both the kNN (48.8% accuracy) and the MLP
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Table 5: Means of scores and times over all 35 participants

Classifier Recall Precision Accuracy (std) Time (s)

kNN 48.82%  50.09% 48.82% (6.88) 0.395
SVM 52.16% 53.09% 52.16% (8.17) 0.312
MLP 51.14% 51.66% 51.14% (8.17) 0.012
Voting 52.07% 52.94% 52.07% (7.67) 0.720

(51.1% accuracy), but the differences between the classifiers are
slight. This corresponds with the research of Chuan et al. [8], who
found that the SVM performs marginally better than the kNN un-
der the same circumstances. The voting classifier achieves 52.1%
accuracy, but it does not provide any advantage over the individual
classifiers. This could be because they all have the same strengths
and weaknesses, possibly due to the underlying data. Indeed when
the confusion matrices of the different classifiers are investigated,
they all appear identical. Figure 7 shows the aggregate confusion
matrix for all the classifiers over several runs.

In Table 5, the mean times taken in seconds to test the classifiers
are shown. These are all tiny values, especially seeing as the time
stated is the time taken to classify about 260 gestures, on average.
The higher time for the kNN is due to the distance calculations
which must be made during classification. The high test time for the
voting classifier is due to the fact that all the other classifiers have
to make their predictions before it can calculate its own prediction.

all
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Figure 7: Confusion Matrix for all classifiers

5.5 Reliability of Data

While these accuracies are much better than random chance (=
3.8%), they are not as high as the accuracies reported in the litera-
ture. This is due to the realistic data gathering set up use for these
experiments. For example, the Leap visualiser was not on display,
so the participants did not have a chance to manoeuvre the Leap
software into interpreting the hand correctly. The only requirement
was that the hand gesture looks correct to a human, as this is the
most realistic use case. Additionally, while the gestures were tilted
slightly towards the device, priority was given to the human viewer
being able to interpret the gesture. Thus, a suboptimal set-up for
the Leap software was used, in order to mimic realistic use of the

device. The result of this is the Leap software misinterpreting the
data, and outputting an incorrect model of the hand.

As expected, similar looking gestures are confused for one an-
other. For example, the gestures A, E, M, N, O, and S are similar
to each other, due to their similar base, a fist (See Figure 1), and
they are some of the worst classified gestures. This similarity, and
oftentimes the occlusion of the thumb, results in poor interpreta-
tion of the hand by the Leap software. A similar issue occurs with
the gestures D, U, and V as shown in Figure 1, however, an extra
complication with this set is that the Leap struggles to detect raised
fingers correctly. For example, D can be confused for E because
the raised finger is simply not detected. This may be because the
hand is not tilted down enough to be able to detect a raised finger.
A milder example of this is the confusion of D for X. If a raised
finger is detected, the perspective makes it unclear whether it is
fully extended or slightly bent like in an X. Two gestures exempt
from these problems are L and Y (Figure 1). This is because the
thumb (and the pinky, in the case of Y), which is extended sideways,
is not occluded by the rest of the palm and is clearly visible regard-
less of the tilt of the hand. As seen in Figure 7, the most confused
gestures are U and V so these are investigated further by studying a
visualisation of the recorded gestures. As seen in Figure 9, none of
the visualised gestures were recorded correctly, and U and V look
extremely similar, with the second extended finger not recognised
at all. A recording of W is included to demonstrate further the
problems Leap has when attempting to recognise raised fingers.
As Figure 7 shows, W is actually not as badly recognised as U and
V overall. This could be because the Leap recognises more raised
fingers than in any of the other gestures, and so that is enough to
classify it correctly sometimes. However, these are illustrations of
only three gestures, and further analysis needs to be done to draw
such conclusions.

Selecting the highest confidence frame improved the accuracies
somewhat (by about 3%), however about a third of all the gestures
still had a maximum confidence of less than 50%. These were not
removed in order to keep the same number of gestures as used in
testing the Myo and the Kinect.

(a) Gesture U

(b) Gesture V (c) Gesture W

Figure 8: SASL gestures for U, V, and W

Figure 9: Visualisation of recorded gestures for U, V, and W
respectively



5.6 Application

While a motivator for this research is a learning tool for SASL,
the main focus is the Machine Learning challenge. For this reason,
priority was given to the static gestures, and the dynamic gestures
were treated as static gestures. While this results in relatively good
accuracies for the dynamic gestures, this approach can only rea-
sonably be extended to a SASL learning tool for the static gestures.
This is because a static image of a dynamic gesture is not accurate
enough to be able to verify the accuracy of the gesture in the real
world. The reason they were classified well in this experiment is
that even the static images tended to be dissimilar enough from the
rest of the gestures to be classified as the correct gesture.

6 CONCLUSION AND FUTURE WORK

In agreement with the literature, the SVM performed best out of the
three main classifiers with an accuracy of 52%. The MLP (the type of
ANN used) performed second best with an average accuracy of 50%,
and the kNN performed worst, with an accuracy of 49%. The voting
classifier did not improve on the SVM, with an accuracy of 52%. The
confusion matrices for all classifiers were visually indistinguishable,
so underlying data was theorised to have been the bottleneck. This
was shown to be correct using visualisations of the recorded data,
and the effect was minimised by taking only the highest confidence
frames for processing.

Because the data used for this experiment was gathered using
the Leap, the Myo and the Kinect, the data can be combined validly
in order to train a more accurate classifier. The different devices
provide different perspectives on the gesture performed and so
combining the data may prove useful.

In addition to its model of the hand, the Leap motion software
also outputs raw depth images from its two cameras. This data was
not gathered for this experiment, but may prove more useful than
the Leap’s hand model data.

During the recording phase, in addition to necessitating that a
hand can be detected, a minimum confidence value could be re-
quired. While this does not take away from the person to person
set-up (rather than person to Leap), it may take away from the con-
venience of the device. This experiment could be redone using the
Orion Leap motion tracking software, which lacks the confidence
value, but may recognise the hand more accurately.

Looking into taking advantage of multiple frames effectively
may improve the accuracy, and allow the classifiers to be used for
more than alphabet recognition. A simpler approach would be to
select frames at certain time steps and simply extend the features.
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